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Abstract
Iterative function systems are often used for investigating fractal structures. The method is also
referred as Chaos Game Representation (CGR), and is applied for representing characteristic
structures of DNA sequences visually. In this paper, we proposed an original way of plotting
CGR to easily confirm the property of the temporal evaluation of a time series. We also showed
existence of spurious characteristic structures of time series, if we carelessly applied the CGR to
real time series. We revealed that the source of spurious identification came from non-uniformity
of the frequency histograms of the time series, which is often the case of analyzing real time
series. We also showed how to avoid such spurious identification by applying the method of
surrogate data and introducing conditional probabilities of the time series.

Keywords : Chaos Game Representation; Method of Surrogate Data; Time Series Analysis;
Conditional Probability.
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1. INTRODUCTION

Today, most DNA sequences of genomes, includ-
ing human genomes, are decoded, then it becomes
important to understand functional structures of
DNA sequences. It is well known that DNA
sequences contain short sequences, which are
related to evolution process and properties of
lives. The short sequences are sometimes called
“motif,”1 which indicate important functionality
embedded iteratively in DNA sequences. For visu-
alizing characteristic structures of such motifs, the
method of Chaos Game Representation (CGR)2,3

is reported to be effective. The CGR is based on
Iterative Function System.2,3 In Ref. Jeffrey,3 it
was reported that CGR can represent a charac-
teristic structure hidden behind DNA sequences
by a density of dots in a two-dimensional unit
square.

We found that the method works well under some
conditions. However, we also confirmed that the
method of CGR often led to misinterpretation of
result analysis. In the present paper, we reported
how and why such misinterpretations can occur.
The source of such misidentification came from
the non-uniformity of the frequency histograms of
the data.

To avoid such spurious identification, we pro-
posed two statistical tests in the present paper. The
first one is based on the method of surrogate data,4,5

which is often used in the field of chaotic time series
analysis. Although the surrogate tests are effective
for judging whether or not a finite sequence is pro-
duced by random, linear or nonlinear dynamics, it
does not always mean that we can understand the
detail of the dynamics, even if the existence of a
dynamical structure is indicated by the surrogate
tests. If there exist any dynamical relations, the
present value of the time series might depend on
the previous values. From this viewpoint, we also
introduced the second test; calculating conditional
probabilities to evaluate occurrences of each symbol
in the sequence, we visualized the difference from
random processes.

To validate our method, we first analyzed human-
DNA sequences. Moreover, we applied our tests to
analyze interbank-exchange rates derived from a
financial system. It is acknowledged that financial
time series often has a fractal structure.6 Thus, it
is an interesting issue to apply the proposed tests
to financial data to reveal hidden characteristic
structures.

Interbank-exchange rates are described by bid
and ask prices. Several financial models7,8 are used
to discuss influence of bid and ask prices on these
future prices and interaction with other variables,
such as dealing time intervals. In our previous
study,8 we discussed a nonlinear response of such
a financial system against past price movements,
introducing the spreads between bid and ask prices,
which represent benefits and risks of a dealer.
Such spreads are also an important variable in dis-
cussing a complex mechanism of a financial system.
Thus, we analyzed the movements of the spreads by
using CGR.

2. CHAOS GAME
REPRESENTATION

2.1. How to Draw CGR2,3

First, let us assume that time series X(t) is already
quantized into four integers, X(t) ∈ {1, 2, 3, 4}.
Next, we prepare a two-dimensional unit square U ,
whose four vertices are denoted by Vi (i = 1, 2, 3, 4)
which correspond to the values of X(t). Then, an
initial point A(0) is randomly plotted in the square.
The second point A(1) is defined as the midpoint
between A(0) and VX(1). In general, A(t) is recur-
sively plotted as the midpoint between A(t−1) and
VX(t). If X(t) has a characteristic structure, it was
reported3 that the plotted image shows a character-
istic fractal pattern on the unit square.

2.2. A Theory of CGR

Let us describe a theory that is useful for pre-
dicting a region where a sequence {X(t),X(t −
1), . . . ,X(t − l)} will be converged. First, we intro-
duced a selecting function fi(T ): which corner of
a square T is nearest to the vertex Vi. We also
denote the sequence {X(t),X(t − 1), . . . ,X(t − l)}
as {X(t : t− l)} and denote a region corresponding
to the sequence {X(t : t − l)} as S({X(t : t − l)}).

Then, we can express the region S as follows:

S({X(t : t − l)})
= fX(t−l)(fX(t−l+1)(· · · (fX(t−1)(fX(t)(U))) · · ·))
= (fX(t−l) ◦ fX(t−l+1) ◦ · · · ◦ fX(t−1) ◦ fX(t))(U),

where U is the initial unit square, and the scale of
the region where the sequence is included is (1/2)l+1

times of U as shown in Fig. 1.
However, because an order of functions for select-

ing the regions is opposite to temporal evolution,
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Fig. 1 In the case of the original CGR. It is difficult
to understand which regions correspond to each sequence
according to temporal evolution.

a set of sequences with the same previous parts is
plotted in separate regions. For example, let us con-
sider four sequences, X1 = {1, 2, 3}, X2 = {2, 2, 3},
X3 = {3, 2, 3} and X4 = {4, 2, 3}. They have the
same part {2, 3}. Although these four sequences
have the same previous part, they are plotted sepa-
rately as shown in Fig. 1. It indicates that this rule
made it hard to understand the essence of CGR.
To treat the issue and understand the essence more
easily, we proposed a reversed time series XR(t) of
X(t) for drawing CGR. Then, the above represen-
tation of S for XR(t) could be rewritten as

S({XR(t : t − l)})
≡ S({X(t − l : t)})
= fX(t)(fX(t−1)(· · · (fX(t−l)(U)) · · ·))
= (fX(t) ◦ fX(t−1) ◦ · · · ◦ fX(t−l))(U).

In Fig. 2, since each function for selecting the region
have the same order with the temporal evolution,
the sequences with the same previous parts are plot-
ted in neighboring regions of each other. Namely,
the process of the reversing time series swapped
the regions where each sequence is plotted without
changing the direction of temporal evolution.

3. THE METHOD OF
SURROGATE DATA

The method of surrogate data4,5 is frequently used
in the field of chaotic time series analysis,4 because
it is useful for obtaining reliable results in nonlinear
time series analysis. Since we must avoid any spuri-
ous identification of a dynamical structure under-
lying time series data, it is well known that the

Fig. 2 In the case of using a reversed time series. As time
evolves, the regions where each sequence is plotted are speci-
fied. The sequences with the same previous parts are plotted
in neighboring regions.

method of surrogate data is important to avoid care-
less estimation of nonlinear indices such as fractal
dimensions,9 or Lyapunov exponents.10 In chaotic
time series analysis,4 a set of surrogate data is con-
structed by a null hypothesis based on existence of
linear and stochastic process. Thus, the nonlinear
(dynamical) structure is completely destroyed. By
comparing statistics of the original data and sur-
rogate data sets, it is possible to reject the null
hypothesis in the case that the statistics of the
original are far different from the surrogates. If the
original data does not have a dynamical structure,
the calculated statistics become almost the same
as those of its surrogates. On the other hand, if
the original data is deterministic, its properties are
completely different from surrogates.

In the present paper, we used an algorithm for
making random shuffle (RS) surrogate and iterative
amplitude adjusted Fourier transformed (IAAFT)
surrogate data. The null hypothesis of RS surro-
gate is that the original data is generated by a ran-
dom process. The algorithm only shuffles sampled
values of the original time series randomly. Thus,
RS surrogates preserve the empirical histogram but
completely destroy the correlation structure of the
original time series.

On the other hand, IAAFT surrogate is an
improved version of amplitude adjusted Fourier
transformed (AAFT) surrogate, whose null hypoth-
esis is that the original data is generated by a linear
stochastic process, then it is transformed through a
static monotonic nonlinear transformation in obser-
vation. The IAAFT surrogate preserves the empiri-
cal histogram of the original time series because the
algorithm is composed of shuffling the data point. It
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can also preserve the temporal correlation structure
well. Namely, the algorithm is a controlled shuffling
of the data point. We described the algorithm for
making IAAFT surrogate data in the Appendix.

4. SURROGATE TEST FOR DATA
SEQUENCE

4.1. Propositions

It is difficult to analyze the time series with CGR if
the occurrence probabilities of each symbol are not
the same. In this case, even if the time series was
generated by random numbers, the result of CGR
showed a characteristic pattern. In this section, we
first show the evidence and we proposed a surro-
gate test for CGR in order to avoid such spurious
identification.

First, we generated s sets of RS surrogates X̂k(t)
(k = 1, 2, . . . , s) of an original X(t) and drew each
CGR Ĉk of X̂R

k (t). In the present paper, we fixed
s = 199. Then, we compared Ĉk to the original CGR
using XR(t). It should be noted that RS surrogate
preserves the frequency distribution but destroys
the auto-correlation structure of X(t).

We divided an initial unit square to N × N sub-
squares, S(m,n) (m,n = 1, 2, . . . , N), which has a
1-to-1 correspondence to a sequence whose length
is log2 N .2,3 Then, we counted the number of plot-
ted dots L̂k(m,n) of the kth surrogate CGR Ĉk

in S(m,n). If the number of plotted dots L(m,n)
by the original CGR Ck in S(m,n) was smaller
than the α(s + 1)/2th smallest value of L̂k(m,n)
or was larger that the α(s + 1)/2th largest value
of L̂k(m,n), we drew each region S(m,n) in blue
(smaller) or red (larger). Here, α is a significance
level for hypothesis testing. In general, it is often
used that α = 0.05. In the following, we show the
results of α = 0.05, but we also conducted the case
that α = 0.01, which is almost similar to the case
of α = 0.05. In such colored regions, we could reject
the null hypothesis that the time series has a ran-
dom structure and does not have any characteristic
structures. If the null hypothesis of RS surrogate
was not rejected, we should consider that the reason
why such characteristic patterns appeared might
be that the time series has non-uniform frequency
distribution.

Next, we used IAAFT surrogates instead of RS
surrogates in order to investigate the existence
of auto-correlation structures of the time series,

since IAAFT surrogate preserves both of the auto-
correlation and the frequency distribution of the
time series. If the null hypothesis of IAAFT surro-
gate was rejected, we could consider that the char-
acteristic pattern shown by CGR was not caused by
the correlation structure of time series.

4.2. Simulations

We used the following three data sets for
simulation.

• [Data A]
We analyzed tick data of interbank-exchange
rates between the US dollars and the Swiss
francs.12 As introduced in Sec. 1, interbank-
exchange rates are composed of ask prices a(t)
and bid prices b(t). Combining these price move-
ments, we analyzed the behavior of the financial
system by CGR. Then, we defined the time series
X(t) as follows:
X(t) = 1, if ∆a(t) > 0 and ∆b(t) > 0;
X(t) = 2, if ∆a(t) = 0 and ∆b(t) = 0;
X(t) = 3, if ∆a(t) < 0 and ∆b(t) < 0;
X(t) = 4, otherwise.

Each frequency is 119, 852, 43, 385, 117, 496 and
2, 222.

• [Data B]
Next, we also used the spreads S(t) between ask
prices a(t) and bid prices b(t). Combining the
movements of spreads, we expect that it is pos-
sible to analyze fluctuation of dealers motiva-
tion against the behavior of such financial system
because the spreads implicitly reflect benefits and
greed of the dealer. Thus, we defined data B as
follows:

X(t) = 1, if ∆a(t) = 0 and ∆b(t) = 0, that is,
∆S(t) = 0;

X(t) = 2, if ∆a(t) �= 0 and ∆b(t) �= 0 and
∆S(t) = 0;

X(t) = 3, if ∆a(t) �= 0 and ∆b(t) �= 0 and
∆S(t) > 0;

X(t) = 4, if ∆a(t) �= 0 and ∆b(t) �= 0 and
∆S(t) < 0.

Although we excluded the case that ∆a(t) �= 0 or
∆b(t) �= 0, we considered that it does not affect
the results, since the frequency is very low (0.4%).
Then, each frequency is 35, 603, 80, 967, 41, 371
and 41, 282.
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• [Data C]
In order to consider a general case that each
frequency is almost uniform, we used real DNA
sequence HUMHBB (human beta globin region,
chromosome 11)2 for analysis. The HUMHBB is
composed from four letters which represent four
acids “A” (Adenine), “C” (Cytosine), “G” (Gua-
nine) and “T” (Thymine). We defined the time
series X(t) as follows:

X(t) = 1, if X(t) was the letter “A”;
X(t) = 2, if X(t) was the letter “T”;
X(t) = 3, if X(t) was the letter “C”;
X(t) = 4, if X(t) was the letter “G”.

Each frequency is 22, 068, 22, 309, 14, 146 and
14, 785.

In addition, we prepared the fourth case that
data A were generated by random numbers.
Namely, we prepared a new data set A′, which has
the same frequency distribution as the data set A,
but whose temporal structure was destroyed. Then,
we drew CGR of the data and applied the proposed
surrogate tests for the data. Figure 3 shows the
results of the test using RS surrogates.

Here, we could confirm the danger of drawing
CGR. Namely, although data A′ are random, the
CGR showed a fractal structure. However, by apply-
ing the proposed statistical test, we could have a
possible conjecture that the structure of data A′

Fig. 3 The results of RS-surrogate test for data A′. Dotted
patterns were drawn by CGR. The upper-left, upper-right,
lower-left and lower-right figures are the cases that the initial
number of dividing N = 4, 8, 16 and 32, respectively.

Fig. 4 The same as Fig. 3, but for data A.

Fig. 5 The same as Fig. 3, but for data B.

might be random since the null hypothesis of RS
surrogate was not rejected in almost regions. If we
did not apply the statistical test, we were misled
to the wrong conjecture that data A′ had a fractal
structure.

Next, in Figs. 4 to 6, we show the results for
the data sets A, B and C using RS surrogates by
changing N . In these figures, we could confirm that
the null hypothesis of RS surrogate was rejected in
almost regions. Namely, each frequency distribution
was not essential for each characteristic structure
shown by CGR. However, we could not deny a pos-
sibility that each correlation structure of the data
sets A, B and C was essential for the existence of
characteristic structure shown by CGR. Thus, we
should examine the possibility with the IAAFT sur-
rogate method. In Figs. 7 to 9, we show the results of
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Fig. 6 The same as Fig. 3, but for data C.

Fig. 7 The same as Fig. 4, but using IAAFT.

Fig. 8 The same as Fig. 5, but using IAAFT.

Fig. 9 The same as Fig. 6, but using IAAFT.

the data A, B and C using IAAFT surrogates. Since
these results showed almost the same as the results
of using RS surrogates, we could confirm that each
correlation structure was not essential for each pat-
tern shown by CGR as well. In these simulations,
we only showed the case of α = 0.05. We confirmed
that a similar tendency is observed for the case of
α = 0.01.

5. VISUALIZATION OF THE
CONDITIONAL PROBABILITY

5.1. Propositions

We proposed the method of statistical testing for
the frequency of occurrence of any sequences in the
former section. Now, we have to raise a question. If
the characteristic structures by CGR are indepen-
dent of the correlation structure of the time series,
what is a source for producing such characteris-
tic structures? One possible answer is that there
exists a dynamical structure. A high-order depen-
dency might cause characteristic structures. In this
section, we proposed the method to evaluate how
a current value X(t) depends on previous series
by the conditional probability, P (X(t)|X(t − 1),
X(t − 2), . . . ,X(t − l)).

As introduced in Sec. 2, a region corresponding
to the sequence {X(t : t− l)} is decided by the the-
ory of CGR. We drew the region S({X(t : t − l)})
in a color according to the value calculated by
P (X(t)|X(t − 1 : t − l)) − P (X(t)). If a sequence
is generated by a random process, P (X(t)|X(t −
1), . . . ,X(t−l)) = P (X(t)). In such a case, the color
of the region S({X(t : t−l)}) is 0, which means that
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values of the time series are independent of the past.
If the frequency of the sequence {X(t − 1 : t − l)}
is very low, the value of P (X(t)|X(t − 1 : t − l))
becomes unreliable. In such a case, we did not color
the region.

5.2. Simulations

To examine the high-order dependency and visu-
alize the conditional probabilities, we applied the
method proposed in Sec. 5.1 to the same data sets
as Sec. 4.2.

In Figs. 10 to 12, we show the results of the data
sets A, B and C. Each color bar shows the value
of P (X(t)|X(t − 1 : t − l)) − P (X(t)). Then, each

Fig. 10 Visualization of conditional probabilities for
data A. Each figure shows the same case as Fig. 3.

Fig. 11 The same as Fig. 10, but for data B.

Fig. 12 The same as Fig. 10, but for data C.

range of color bars corresponds to the values from
the maximum to the minimum of P (X(t)|X(t − 1 :
t − l)) − P (X(t)). As results, we could confirm
that the frequency of the present X(t) depended on
the previous occurrence patterns strongly. If each
datum obeys a dynamical structure, every region
was separated from 0. Namely, the method could
quantify the dynamical structure of data. Moreover,
the method was also very useful for confirming what
will be produced as a next occurrence if we have the
information of the present situation.

6. CONCLUSIONS

We proposed two statistical tests for analyzing
which structure of the analyzed time series caused
the characteristic patterns of CGR. In addition, for
practical usage of CGR, we proposed the original
way of plotted CGR in order to specialize the region
where each sequence is plotted according to the
temporal evolution of each sequence. In particular,
we showed that a careless usage of CGR in the case
that the frequency of data was not uniform led to a
spurious existence of a fractal structure. In such a
case, we were asked to carefully interpret the results
of CGR. In the present paper, we confirmed that
the proposed methods were very effective for avoid-
ing such identification. Moreover, we could conclude
that our methods could be a universal support for
CGR, since we could use not only DNA sequences
but also financial time series, real time series in the
other field, whose frequency is not uniform.
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APPENDIX: MAKING THE AAFT
AND THE IAAFT SURROGATE
DATA

• The AAFT surrogate is generated by the follow-
ing algorithm:

(1) We make the Gaussian time series, which is
reordered to have the same rank order as the
observed original time series. Here, the rank

order is an order of state values in the time
series. In this process, the reordered Gaussian
time series corresponds to a linear stochastic
process and is an inverse by the same static
monotonic nonlinear transformation for the
original time series.

(2) In order to make a time series preserving
a correlation structure, we apply Fourier
transformed (FT) algorithm to the reordered
Gaussian time series. An FT surrogate
making procedure is as follow: the Fourier
transform is applied to the reordered Gaus-
sian time series and its power spectrum is
obtained. In order to preserve the power spec-
trum (a correlation function) of the reordered
Gaussian time series, the phase of the spec-
trum is randomized by Gaussian random
numbers, and the randomized spectrum is
symmetrized to obtain a real time series.
Then, the inverse Fourier transform produces
an FT surrogate which preserves the power
spectrum of the reordered Gaussian time
series.

(3) We shuffle the original data to have the
same rank order as the FT surrogate data
in the process (2). This shuffled data is the
AAFT surrogate, which completely preserves
the histogram and approximately preserves
the correlation structure of the original data.

• Next, IAAFT surrogate is generated by the fol-
lowing algorithm.

(1) We make Fourier shuffled (FS) surrogate data
of the original time series. The procedure for
making an FS surrogate is as follow: we make
an FT surrogate data of the original time
series. Since the FT surrogate does not pre-
serve the empirical histogram, we shuffle the
original data to have the same rank order
as the FT surrogate data. Although the FS
surrogate completely preserves the empirical
histogram, it cannot completely preserve the
power spectrum as the FT surrogate.

(2) The Fourier transform is applied to the FS
surrogate. Here, the power spectrum of the
FS surrogate is replaced by that of the orig-
inal time series, but the phase of the power
spectrum is kept to remain the same.

(3) The inverse Fourier transform is applied to
the data obtained at the second process.
Although the generated time series has the
same power spectrum as the original time
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series, its empirical histogram is different
from the original one.

(4) In order to preserve the histogram of the orig-
inal data, the original time series is reordered
to have the same rank order with the gen-
erated time series by the third process. The
reordered original time series is called an
IAAFT surrogate.

(5) If the discrepancy of the power spectrum
between the original and the IAAFT sur-
rogate obtained in the previous step is not
smaller than a threshold, we repeat the
above step by replacing the FS surrogate to

the IAAFT surrogate in the second process.
Large numbers of repeating the processes pre-
serve more accurately the power spectrum
of the original data than AAFT surrogate
does. In Ref. Schreiber and Schmitz,11 for
the repeating process of IAAFT surrogate,
seven-times repeating is enough from the
viewpoint of false rejection. In the present
paper, we used ten-times iterated IAAFT sur-
rogate. As a result, IAAFT surrogate com-
pletely preserves the empirical histogram and
preserves the correlation structure more accu-
rately than the AAFT surrogate.




