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In recent years, quantitative methods for evaluating chaotic properties have been devel-
oped in the field of nonlinear time-series analysis. The embedding theorem, which is a
mathematical background for the methods, assumes an ideal situation in which noiseless
time series are observed with infinite resolution and an infinite amount of data points.
However, under real situations we cannot ignore two classes of noises which are included
in really observed data. The first one is observational and dynamical noises which de-
pend on internal nonlinear systems and performance of observational instruments, The
second one is quantization error included in the time series since we usually use digi-
tal computers for applying the methods. In the present paper, we derive formulae for
evaluating the levels of observational and quantization noises in the case of embedding
observed time series in reconstructed state spaces. By measuring a distance between
noiseless and noisy attractors, we also confirm that the derived formulae are appropriate
for quantifying the noise included in the reconstructed attractor.

Keywords: Quantization; observational noise; cross-point distance distribution; correla-
tion dimension.

PACS Nos.: 05.40.Ca, 05.45.Pq, 06.20.Dk

1. Introduction

An essential goal of applying chaotic time-series analysis? is to understand a math-
ematical structure of nonlinear phenomena through an cbserved time series. In
order to quantitatively evaluate statistical features of deterministic chaos, several
indices have been proposed, for example, fractal dimensions,? Liapunov spectra,®
Kolmogorov—Sinai entropies, ete.

From the viewpoint of geometric structures of dynamical systems, we can eval-
uate the self-similarity of attractors by estimating fractal dimensions. In particular,
we can evaluate a lower bound of the degrees of freedom of the dynamical sys-
tems by estimating the fractal dimensions that evaluate geometric structures of
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attractors. Thus, we can obtain the information of how many variables we need to
describe the system.

From the viewpoint of dynamical structures,. the orbital instability of trajec-
tories can be studied by estimating Liapunov exponents. If the observed data are
produced from a chaotic dynamical system, the maximum Liapunov exponent is
at least positive. Thus, we can use Liapunov exponents to distinguish chaos from -
a fixed point-like, a limit cycle-like, and a torus-like behaviors. In addition, if the
orbital instability of underlying dynamics of complex observed time series is strong,
Liapunov exponents are large. Then, we can also use Liapunov exponents for esti-
mating the intensity of orbital instabilities of real data.

These indices provide very important information to quantitatively understand
a mathematical structure of complex phenomena. However, the following problems
appear in the case of analyzing real data. First, it is unavoidable to transfer the
observed analog time-series data into digital values, for example by an analog-
digital converter in order to take them into digital computers,* that is, even if state
variables are generated from a smooth dynamical system, we have to change time-
series data into discrete values for numerical analyses. Second, it is often the case
with real experiments that the data sets have already been polluted by a certain
amount of dynamical and observational noises. As a result, the time-series data,
which we can use for numerical analyses, includes these errors. The basic meth-
ods for estimating nonlinear statistics, such as fractal dimensions? and Liapunov -
spectra,® cannot solve essentially the problem of the existence of these noises as
the embedding theorems (which give a theoretical background for applications to
evaluating these statistics)®® prove a sufficient condition that the transformation
from the observed time series to higher dimensional state spaces is possible only
under an ideal situation. Thus, in the case that the time series is corrupted by these
noises, estimation accuracy becomes worse. Namely, it is very important for us to
understand the levels of these noises included in the observed time-series data in
advance.

As for the noise related to a dynamical system, we usually have to treat both
dynamical noises (which are included in the system evolution) and observational
noises (which are included in a observation process). It is also very important to
evaluate levels of the dynamical noises in the case of applying chaotic time-series
analysis methods. However, we do not discuss the levels of the dynamical noise
in the present paper, since it is not so easy to analyze them quantitatively and
to derive a formula for their levels. Thus, we treat here the dynamical noises by
experimentally introducing computer simulations. It should be noted that if we
use a digital computer to evolve dynamical systems, it always includes intrinsic
dynamical noises since all numbers are described by integers.

In the present paper, we analytically derive the noise level by measuring nor-
malized mean-square errors and we formulate these errors by adopting each noise
level as variables in the case of one-dimensional time-series data. Second, in the
case of embedding observed time-series data through the transformation by delay
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coordinates, we also formulate total noise levels in reconstructing attractors. In
each case, in order to estimate the plausibility of derived formulae, we measure the
distance between noiseless and noisy attractors. For this purpose, we measure a
cross-point distance whose concepts are introduced in Sec. 4. As a result, we con-
firm that these formulae offer a plausible approximation for evaluating observation
and quantization noise levels.

2. The Corruption of Time-Series Data by Noise
2.1. Dynamical systems and noisy observation

Let us generally describe a dynamical system and an observation function by the
following equations:

o(t+1) = F(a() + $(2), (1)
5(t) = G(a(t) +8(t) = =(t) + 0(2), (2)

where F' is a dynamical system which is described by n-variables, z(t) e M is a
state value in an n-dimensional manifold M at discrete time ¢ and ¢ is a dynamical
noise. In the present paper, since we do not consider the existence of dynamical
noises, Eq. (1) is simply replaced by z(t + 1) = F{z(t)).

Usually, we cannot observe all variables included in M. Instead, we can observe
an m-dimensional time series z € R™ (m < n). The function G corresponds to
an observation function: a static transformation from the state value ¢ on M to
the observed value z in R™ (G'(z(t)) = 2(t)). The variable 8 in Eq. (2) is called
an observational noise. Then, 2(t) is an observed state value corrupted by the
observational noise.

2.2. Observational noise

In any observation, a certain amount of noise exists, depending on the performance
of observational instruments, observational condition, skills of experimentalists, etc.
For evaluating a level of the noises, it is very natural to use the following index, the
signal-to-noise (S/N) ratio,” which is defined by

S (2(t) — 2)°
R[dB] = 10lo , 3
[ ] glO Zﬁr___lﬂ(t)g ( )

where (%) is a “pure” time series generated from the dynamical system and trans-
formed by the function G (that is, time-series data without noise), IV is the length
of data and 7(t) is the first observational noise, which is assumed to be Gaussian
random numbers with zero mean. Then, we set various S/N ratios by changing the
variance of n(t) in Eq. (3).
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2.3. Quantization

Next, we introduce the quantization error as a measurement noise. It is necessary to
quantize the observed time-series data in order to take it into a digital computer for
numerical analyses. The noise is called the quantization error. Let us describe the
range F; from the maximum value to the minimum value of the observational data,
which we call Full Scale Range (FSR). To divide this range F; is our quantization,
and its minimum value L, is called Least Significant Bit (LSB). In the case of
quantization by Q[bit], L, is given by

F,
L3=2—5, (4)

and gL, (g = 0,1,...,29 — 1) are middle points in each bin of the width L.
When the input analog amplitude is included in [gL, — (1/2)Ls,qLs + (1/2)Ls),
the output digital value becomes gL, as shown in Fig. 1. In this quantization, the
output value has the error distributed in the range [—(1/2)Ls, +(1/2)L;] to the in-
put value. We can consider that this error follows a uniform distribution. If the input
value is larger than (29 — 1)L, + (1/2)Ls (= Fs — (1/2)L,), we define the output
digital value as (29 — 1)L, (thus, the quantization error in the over range becomes
larger as shown in the lower plot of Fig. 1).8

2.4. Normalized mean-square error

In an ideal situation, noiseless time series is utilized for numerical analyses. In
actual cases, we can only observe the time-series data corrupted by two types of
noise described in the previous section. :

Now, as a first measure, we use a difference between noiseless and noisy time-
series data with the following normalized mean square error E. If E is larger, the
accuracy of estimating nonlinear statistics gets worse:

N A
o VUM EL G0 - 20 .
N " H
JWN SN (2(1) - 22 -
where 2(t) is the time-series data corrupted by the observational noise and the
quantization error, and z is the mean value of z(¢) (¢t =1,2,...,N).

3. The Method for Estimating Errors in the Case of
One-Dimensional Time Series Data

3.1. Formulation of the error

The time-series data z(t) is generated from the dynamical system of Eq. (1).
Then, the variable 2(¢) (transformed from z(¢) by an observation function) in-
cludes the observational noise n(t) and includes the quantization error £(t) by tak-
ing observed data into a digital computer. Namely, the total noise 8(t) is given by
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8(t) = n(t) + £(t). Here, we assume that the quantization level Q[bit] is known
since an experimentalist can set it up freely. We also assume that F. is known as
well. In addition, we assume that the observational noise R[dB] can be estimated a
prior, since we usually know the performance of observational instruments and ex-
perimental situations. Under the possible assumptions described above, we consider
the following issue for evaluating noise levels. Let n(t) follow a normal distribution
and £(t) follow a uniform distribution, and both have the mean value 0. Then, the
time-series data which can be utilized for numerical analyses, 2(t), becomes

2(t) = 2(t) + n(t) +£(t). (6)

By substituting Eq. (6) into Eq. (5), we obtain

N 2
g VUM TG0 +e0r -

Ty

i L
7%
. 5

| y.

5.000—
4

3.750+ ///

2.500+—
L
1,250+ ///

0.000

%[0 \ » input

Quantization error \

0.000
0.625
1.250+-
.85
2.5004
3.1251+
3.758+
4.3751+
5.0081
5.6251
6.256¢
6.875
7.50081
8125
8.750671
9.375

Fig. 1. The upper figure denotes the quantization characteristics of input and output data in
the case of @ = 3[bits], Fs = 10 and Ls = 1.250. The lower figure shows the corresponding
quantization errors. When the input value is larger than 9.375, the quantization output is set to
8.750.



1368 T. Suzuki, T.lfkeguchi & M. Suzuki
where o, is the standard deviation of the time-series data z(¢). Without a loss of

generality, Eq. (7) becomes
o2+ o2
g=Y ¢ (8)

Oz

under the condition that (1/N) Zi\;ln(t)jg‘ (t) = 0. Then, Eq. (3) leads us to the
following results:

b

z
2 2

R[dB] = 10log, -=
9y

2 _ 2 ~R/10
op =0z X 10 .

Next, we calculate ag. Since the quantization error is considered to be uniformly
distributed,

1 +L./2 L2

2 2 5
O = — 0—z)de ===

¢ Ls/—Ls/2( ) 12

Since L, = Fy/29 in Eq. (4),

12 \29)
Therefore, we obtain
r 2
B oy (T 9
\/ V120,29 )

and also we have its logarithmic representation as follows:

: 1 F 2
1 _ = ~R/10 8 ) 1
og & 210g{10 +( ’""1%2@) } (10)

However, since o, is an unknown quantity, it is necessary to calculate o, only from
9 . oy o v s

oz, Fs, @ and R, which are assumed to be known quantities. By the additivity of

variance, we have

N 2

2 2
=0; +o, o0,

5 -
o2 :ag—ag —ag :ag—og x 107 R/10 _ (—i—> .
Then, we obtain the following expression:
2 (Fy/V/12 x 2Q)2
o, = | UE/VI2 X 397 (11)
’ 14 10-£/10

Equation (11) enables us to calculate the standard deviation of noiseless time-
series data, and leads us to calculate the solution of £ by substituting Eq. (11) into
Egs. (9) and (10).
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3.2. Numerical stmulation

For evaluating the above results, we perform computer simulations with the Hénon

map?:

z(t+1) =1~ azx(t)? + y(¢),
Yt + 1) = ba(t).

We only use the first variable of the Hénon map z(t) (a = 1.4 and b = 0.3) as an ob-
servation with the following conditions: starting from an arbitrary initial condition,
we omit the first 1500 points as transients, and we use the following 2048 points for
our experiments. Next, we add ‘two types of noises to the data z(t). We introduce
two functions hg(z) and hg(z) in order to describe that z(t) is corrupted by £(t)
of R[dB] and by 7(t) of Q[bit]. Namely, the former adds normal random numbers
as the observational noise with R[dB] to the data z(¢), and the latter quantizes to
the data z(t) by Q[bit]. Figure 2 shows the results of log E by the transformation
ho(hr(z)) with each noise. In Fig. 2, dotted lines are theoretical values calculated
by Egs. (10) and (11) and open circles are the experimental values calculated by
Eq. (5) for the first variable of the Hénon map.
Next, for Egs. (9) and (10), we consider the case of nio observational noise by
R — oco. Then we obtain
. F

EIR—FOO = \/1—T._z2"63 (12)

3
[

T T

T T
........ @.."““«@.\....,-..-@..‘“..,@w“..u@,...w..n....nv“.....,...n()

Ll R=20[dB]
Prsvanaas, @ anrvren Srvriann Basnveanns @vrenrves Broveaavuvirnaverasnveansyye b
4 G R=30[dB].
\,.:.P"G ------- B anrvees Crxeerinx ABrevinram e s v eeaorcactrnatitavyaons b
S0 Ny R=40[dB]-
. BREY - SO Garsrcenn Oraatrnxe EXrerasraxaabancanrarutarins s
= \-;;.* R=50[dB]
e, |
° g L ‘Q’_‘ A YN ST [ T TR @D
N R=60[dB]
g r \; """"" Grasrrcy, B htsresancvrratyrraattirrniny q
R=70[dB]
N
ST T Brevval, D b1 dCtvrannveranncrinnsvoas p
N, R=80[dB]
-10 ]
R—o[dB].,
=11 C L 1 ) I _\'m I I -
[ 8 10 12 14 16 o0
Q {bit]

Fig. 2. Dependence of log F on Q[bit] and R[dB]. Dotted lines denote theoretical values calculated
by Egs. (10) and (11) and open circles denote experimental values estimated by Eq. (5). The first
variable of the Hénon map is used for the simulation. A black dashed line denotes an asymptotic
line caleulated by Eq. (13).
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and
Fs
V120,

Here, Eq. (13) is plotted by a dashed line in Fig. 2. On the other hand, if no
quantization corresponds to @ — co, then we have

10g(E|r—o0) = —(log 2)@ + log (13)

E|g_no = 107F/20 (14)

and

1
log(ElQ—*oo) = 30

Here, Eq. (15) shows the convergence of F at each observational level as shown
in Fig. 2. Namely, when time-series data is corrupted by the observational noise,
we cannot obtain time-series data with higher quality than that of a saturated
value log F|g_oo shown by Eq. (15). The difference from convergence values can
be calculated by subtracting Eq. (15) from Eq. (10),

(loglO)R. (15)

2

1 F - 1
log B ~log(E|g—oo) = 5 log {IO—R/10 + (m) } + Eﬁ(bg 10)R

1 F, \?10R/10
== . 1
5 log {1 + ( —1202) 10 } (16)

From Eg. {(16) and Fig. 2, we find that the difference from the convergence value
- decreases exponentially as @ increases under the situation that R are constant.
Namely, even if we expend numerical cost to increase the quantization level, we
cannot sufficiently reduce the quantization error.

Generally, in quantization, since we perform 2%9-times calculations per a datum,
we define a numerical cost C as

C=Nxsx29, (17)

where N is a data length and s is computation speed which depends on an analog-
to-digital converter. When we increase the quantization level, the improvement of
log ' against the growth of the numerical cost is evaluated by

_dlog B/dQ  (Fy/V120.)* x 107/10/N x s
dC/dQ 8R4 (Fy/V120.)% x 10R/10 x 2Q

Since it is a decreasing function, increasing the quantization level leads to reduction
of cost performance. Though the best cost performance is given by setting @ = 0,
its data accuracy becomes worst. Namely, it is not an optimization problem for
obtaining an optimum quantization level, but it becomes a trade-off between the
data accuracy and the cost performance. From this point, Eq. (16) gives us valu-
able information on how much the normalized mean-square error can be reduced,
depending on the situation.
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4. Estimating Errors in the Case of Reconstructing Attractors in
A Higher-Dimensional State Space

In the previous section, we estimate an error between noiseless and noisy single time
series. In this section, we estimate an error between noiseless and noisy attractors
in a higher-dimensional state space. In order to estimate this error, we consider
“difference” between a noiseless attractor and a noisy attractor. Since it is natural
to consider that the “difference” is a distance between two attractors in the state
space, we should evaluate the distance under some metric with compact support be-
tween two attractors. For evaluation between two or more sets, there are Hausdorff
measure, Kolmogorov measure, and so on. Although these measures are mathe-
matically rigorous, it is convenient for us to introduce a different method based
on inter-point distances'® and cross-point distance'*'12 of points on the attractors,
which would be easier for numerical calculation. We use these indices as a new
distance in order to evaluate the difference between noiseless and noisy attractors
in the reconstructed state space.

4.1. Inter-point and cross-point distances

First, we reconstruct time-series data in an m-dimensional reconstructed state

space,® and calculate the inter-point distances on the attractor v(t) = {v(¢),
vt +1),...,v(¢+m—1)} by
| di = |v(k) —o()] (k#1). (18)

We introduce the condition %k 5 [ to omit the case that di; = 0 since this case does
not reflect the geometric feature of the attractor. Then, we calculate its frequency
distribution. Here, the ¢th bin is defined by B; = [ri+1,7:), 1 >0, 73 = Xrg, A < 1,
and rg (> 0) is the cutoff value and the number of points included in B; is denoted
by bi-13

Next, we can observe visually the difference between two attractors embed-
ded in the same state space. Let us describe the first attractor v(t) = {v(¢),
v(t+1),...,v(t+m — 1)}, and the second attractor w(t) = {w(t),w(t+1),...,
w(t+m — 1)}. Then, to calculate the difference between two attractors, we modify
Eq. (18) as follows!11%;

dy = lo(k) —w(l)] (k#1), (19)

which we call a cross-point distance. In this case, dj, is normalized by maxy ;{d},}.
Then, we calculate its frequency distribution as well as that of dy. If two attractors
are the same ({v} = {w}), the distribution of the cross-point distances between
two attractors d), is equivalent to that of dg;, the distribution of the inter-point
distances from a single attractor. Therefore, by calculating distributions of d, and
dy; and comparing these two distributions, it is possible to estimate the difference
between two attractors.!*2 For fair comparison, we impose the condition k # ! in
order to normalize dy; and dj,. Then, we apply the above strategy to the evaluation
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of the observational noises and quantization errors in this case. Namely, we consider
the first attractor {v} as a noiseless attractor, and the second attractor {w} as noisy
attractors.

4.2. Numerical experiments

For numerical experiments, we introduce several examples. The first one is the
Hénon map as already introduced in Sec. 3.2. The second example is the Ikeda
map!* described by:

{ 2(t + 1) = q + b(z(t) cos(¢(t)) — y(t) sin(4(t)))
y(t+ 1) = b(x(t) sin(d(t)) + y(t) cos(¢(2))),

where ¢(t) = x — /(1 + 2%(t) + ¥*()), ¢ =1, b= 0.9, 5 = 0.4 and o = 6.0.
The third one is the Lorenz equations?®:

(dz +

= oz toy,
Jﬂl-z—mz—l—'ym—y
dt ’
dz
kil

where ¢ = 10, b = 8/3 and v = 28.
Finally, we use the Rossler equations?6:

fgf-—
dt_ y z:
dy
A
7 T+ ay,
dz
ka‘—b‘l‘a(fE_C),

where ¢ = 0.36, b = 0.4 and ¢ = 4.5.

We only use the first variable of each dynamical system as an observation with
the following conditions: starting from an arbitrary initial condition, we omit the
first 1500 points as transients, and we use the following 2048 points for our experi-
ments. For evaluating noise level, the attractor reconstructed in an m-dimensional
state space by the first variable of the above dynamical systems is considered as {v}.
‘Then, the corrupted attractor becomes {w} = hg(hgr{{v})). Figure 3 shows exam-
ples of {w} (m = 2) of the Hénon map, with the observational noise by R = 30[dB]
and the quantization error by @ = 6{bits].

Next, we calculate frequency distributions of df,. When {v} is equivalent to
{w} {for R — oo and @ - cc), the frequency distributions become the same as
the frequency distributions of the inter-point distance dy;. They are shown in solid
lines in Figs. 4-7.

In Figs. 4-7, we can confirm that the frequency distributions have different slopes
and/or exhibit Auctuation from a certain scale caused by the influence of two types
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-1.5
-1.5

0 1.5
x(?)

(a) R — co[dB] and Q — oo[bits] (noiseless)

-1.5
-1.5 0

(c) R =30[dB] and @ = 6[bits).
Fig. 3.

The first variable 2(t) of the Hénon map is artificially corrupted by the noise levels
R[dB] and the quantization levels Q[bit], and it is transformed to the two-dimensional state space
(z(), z{t + 1)).
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14 T 13 T T T T

~—— R~O[dR]
=% R=20[dB]
c+oxs R=40[dB]
-+ R=E0[dB]
..... r(go,oo)
....... }'(40,03)
[ r(gg,oo)

—— Q~oo(bit]
== =6 [bit]
cexes = 8 [bit]| 4
w e O=10bit]
-~ 1%, 6)

....... ]-(OO’ 8) T
- f-(oo, 10)

-2 0

(b) R — oo[dB].

Fig. 4. In the case of the Hénon map, the frequency distributions of inter-point and cross-
point distances, with {v} and {w} (= hg(hgr({v}))), in the same state space (m = 2). Solid
lines correspond to the frequency distribution of the inter-point distance of {v} (in this case
{w} = {v}). By comparing solid lines with other frequency distributions (dashed-dotted lines,
dotted lines and dashed lines), it is possible to see visually the difference between {v} and {w}.
In each figure, r(R, Q)'s of Eq. (21) are also plotted, which give us the information on derived
critical scales, where each structure of attractors begins to be destroyed by noise of R[dB] and
Q[bit]. We find that these »(R, Q)’s show proper values.
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R ‘=% R=40[dB],0= 6 [bit]
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0 1, R Y 1 i ! i 1
-10 -8 -6 -4 -2 0

(c) Results obtained by changing R[dB] and Q[bits] simultaneously.

Fig. 4 (Continued).

14 ' ‘ : L
12 F
10r
<5 8 '
S i
S 4l ‘
| —— R—oo[dB]
il : e R=20[dB) J
i - R=30[dB]
| P—— ?‘(10,0‘3)
| I VOO r(20,00)
! - - #(30,¢)
0 o l ]
_8 -2 0

logr,
(a) @ — co[bits].

Fig. 5. The same as Fig. 4, but for the Ikeda map (m = 3).
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(¢) Results obtained by changing R(dB] and Q[bits] simultaneously.

Fig. § (Continued).
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—— R—20[dB]
- R=20[dB]
% R=40[dB]
b R=60[dB]
''''' r(zosm)
....... r(40’00)
- = - r(60,)

(b) R — oo[dB].

— O~oopbi
ik Q= 4 [bit]| |
PR A Q: 6 [blt]
i Q= 8 [bit)
''''' r(DO, 4 ) ]
....... r(oo, 6)

- r(oo’ 8)
-2 ]

Fig. 6. The same as Fig. 4, but for the Lorenz equations (m = 3). In {a),
smaller than the minimum range of frequency distribution, its distribution is

observational noise in the scales.

since (60, co) is
not disturbed by
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(c) Results obtained by changing R[dB] and Q|bits] simultaneously.

Fig. 6 {Continued).
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Fig. 7. The same as Fig. 4, but for the Rossler equations (m = 3).
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of noise. In small scale regions, the frequency distribution is easily influenced by
noise, which is similar to the case that the time series is perturbed by an additive-
random noise.!” This tendency is clearly shown by the fact that the cross-point
distances are disturbed by noise.

In Figs. 4(a)-7(a), the dimension of observational noise takes a value almost
m, since the transformation of Gaussian noises in a delay coordinate fills in the
m-dimensional state space. Then, in the scale of strong influence of noise, the slope
of a frequency distribution of the cross-point distances converges to m, since orig-
inal structures of attractors are destroyed. Moreover, the inter-point distance of
destroyed structures becomes large by noise and goes out in this scale.

In Figs. 4(b)-7(b), the frequency distributions are blurred by quantization noise
from this scale although these tendencies are not clearer than the above cases of
observational noises. In particular, the types of fluctuated distributions are different
between the cases of difference equations (Figs. 4 and 5) and differential equations
(Figs. 6 and 7). Though, in the former case, their frequency distributions are bended,
in the latter case, their frequency distributions are disturbed. Even if we change
embedding dimension, these tendencies are the same.

Figures 4(c)-7(c) correspond to real situation in which we record the obser-
vational time series by setting a quantization level. We can confirm that increas-
ing quantization levels leads to the convergence of the frequency distributions dis-
turbed by two types of noise (Figs. 4(c)-7(c)) to those of only observational noises
(Figs. 4(a)-7(a)).

From the above simulations, we can find that there exists a critical scale, at
which the structure of attractors is destroyed by the noise levels R and Q. This
scale give us important information to quantify the degree of these noise. We will
formulate this critical scale in the following section.

4.3. Ewvaluating the critical scale

First, we remember that the total noise in one-dimensional time series data. is
0(t) = n(t) + £(t). We can also denote the noise as #;(¢), which affects a single
component on the m-dimensional reconstructed attractor w(t):

0:(t) = mi(t) + & (1),

where 1 =1,2,...,m, 6;(t) = 8(t + (i — 1)7) and 7 is a time delay. Then, we denote
the global-total noise ©(z), which is included in a global attractor w(t) and affects
a cross-point distance (Eq. (19)), as
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Here, since (1/N) Ef__l ©(t) = 0, the variance ¢ is given by

. 1 N \ 1 N m ) m \ .
Jé=ﬁ29 (t):NZZB,.(chaei:_mmg.
t=1 i=1

t=1 i=1

Moreover, since oj = o2 + 07, the standard deviation og is given by

oo =Vmx /o240, | (20)

oo = vVm x 0, E.

Dividing oo by the maximum of cross-point distances, maxy,{d;}, in a log scale,
we approximate the critical scale as follow. Let us denote the approximated critical
scale as r{R,Q) (since it depends on both of noise levels R and Q). Therefore,
we define

By Eq. (8),

Jdo

Vmo. (21)

r(R,{) =lo —_—
(7. Q) =leg e ()

= log E + log

From Eq. (21), we find that r(R, Q) in an m-dimensional state space has a linear

relation to log E' in the one-dimensional case. The calculated (R, Q)’s are shown

in Figs. 4-7 by vertical lines. In each figure, we confirm that a turning edge at each

frequency distribution can be approximated by the derived critical scale (R, Q).
Furthermore, by Eq. (13), the asymptotic state of (R, Q) in the case of R — oo

is derived as follows:

ymo,

r(00,Q) = l0g(Elrsc0) + log ———=— max,{dy;}

\/—O'z

~(log 2)Q + log " [}\F (22

Then, by Eq. {15), the convergence value of r(R, @) in the case of Q) — ocis

£y
—{log 2)Q +1 +1lo
(log 2)@Q + log T, e T

mo.
maxg,{dy }

Ve o (29)

maxy, {d},; } l}

(R, c0) = log(E|g—eo) + log

0(log 10)R + log ————-

The difference of r(R, Q) from the convergence value is given by

r(R, Q) — r(R. 00) = log E + 6%(mg 10)R

1 F, \?108/10
— = %
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which becomes the same as Eq. (16). By Egs. (24) and (17), it is possible to set
up the quantization level @ from the viewpoint of considering numerical costs for
quantization and estimating error on a multi-dimensional attractor.

Finally, it is valuable to comment on the multi-dimensional case. Namely, it is
easy to extend the above formulae in the case of multivariables of time-series data,
embedded in a reconstructed state space,® if we consider o3 as the sum of each
variance of total noise included in each variable in Eq. (20).

5. Conclusions

In the present paper, we have formulated the influence of noise in the following cases:
one-dimensional time series and a reconstructed attractor from the one-dimensional
time series in multi-dimensional state space. In each case, we have shown the plausi-
bility of these formulae by comparing each experimental result with our theoretical
one. Then, we have found that increasing quantization level does not always lead
efficiently to the reduction of total errors. We have also shown that the influence of
the noise in the case of reconstructed attractors in a multi-diniensional state space
has a linear relation to the case of one-dimensional time-series data. These results
are expected to be good guidelines to set up appropriate quantization levels with
considering numerical costs for nonlinear, possibly chaotic time-series analysis.
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