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Abstract. To evaluate predictability of complex behavior produced from
nonlinear dynamical systems, we often use normalized root mean square
error, which is suitable to evaluate errors between true points and pre-
dicted points. However, it is also important to estimate prediction in-
tervals, where the future point will be included. Although estimation of
prediction intervals is conventionally realized by an ensemble prediction,
we applied the bootstrap resampling scheme to evaluate prediction inter-
vals of nonlinear time-series. By several numerical simulations, we show
that the bootstrap method is effective to estimate prediction intervals
for nonlinear time-series.

1 Introduction

Several prediction methods have been proposed for analyzing complex, possi-
bly chaotic, time-series, for example, the Lorenz’ method of analogues[l], the
Jacobian matrix estimation[2], the Bootstrap nonlinear prediction[3], and the
kNN techniquefd]. In the field of nonlinear time-series analysis, these prediction
methods are important not only to predict future values of the time-series, but
also to analyze long-term unpredictability and short-term predictability, or one
of the essential characteristics of deterministic chaos[5].

To evaluate the prediction accuracy, we usually use a normalized root mean
square error between true points and predicted points. In such a case, prediction
must be described as a point even if its predictability is unreliable due to small
size data or noise in the data. In this paper, we evaluate prediction accuracy
from another viewpoint: we estimate prediction intervals in which the future
point would fall.

In statistical literatures, several attempts have been made on evaluation of
prediction intervals. For example, in Ref.[6], the bootstrap method is used to
evaluate prediction intervals for autoregressive models. In Ref.[7], a parametric
bootstrap method is applied to financial time-series. In Ref.[8], the endogenous
lag order method of Kilian[9] applied to sieve bootstrap prediction intervals.
However, an application of the bootstrap method is usually evaluated through
a linear model such as ARMA.
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Although a nonlinear model for a stochastic volatility is used in Ref.[7], how-
ever, there is no application of the bootstrap method to more general class of
nonlinear dynamical systems, possibly producing chaotic response. In this paper,
we apply the concept to the prediction problem of nonlinear, possibly chaotic,
time-series.

The concept of the prediction intervals does not directly evaluate the pre-
diction accuracy but statistically estimates a spatial distribution of the future
point which might be included in a bounded interval. One of the conventional
methods for evaluating such a prediction interval is the ensemble prediction[I0].
However, because the ensemble prediction needs large size data to evaluate en-
semble properties, estimated prediction intervals[6l7] might be unreliable in the
case that we cannot use large size data. In Ref.[3], we have already reported
effectiveness of the bootstrap resampling scheme[ll] for nonlinear prediction
even if the data size is small. This paper [3] showed that the bootstrap re-
sampling method improves prediction accuracy for nonlinear chaotic dynamical
systems.

Thus, it is expected that the concept of the bootstrap method would also
work well for the present issue. In this paper, we compared the performances of
the ensemble prediction and the bootstrap method on the basis of accuracy or
efficiency of estimated prediction intervals. By several numerical simulations, we
reveal that the bootstrap method has advantages on the evaluation of prediction
intervals for nonlinear time-series.

2 Local Linear Prediction Methods

Although there are several local linear prediction methods[IJ2I45], we introduced
two basic methods[TJ2] which are used for estimating prediction intervals in the
following sections. At first, let us consider a nonlinear dynamical system:

w(t+1) = fz(t)), (1)

where f is a k-dimensional nonlinear map, x(¢) is a k-dimensional state at time
t. To estimate the Jacobian matrix of f, we linearize Eq.(]) as follows:

sz(t+ 1) = Df(z(t))dz(t), 2)

where D f(x(t)) is the Jacobian matrix at «(t), and dx(¢) is an infinitesimal
deviation at x(t). To evaluate D f(x(t)) only with local information at (),
we first extract a near-neighbor set of x(t). Let us denote the i-th near neigh-
bor of x(t) by x(t,), (i = 1,2,...,M). Here, M is the total number of near
neighbors. After temporal evolution, displacement vectors can be denoted as
y; = ®(ty,)—x(t) and z; = x(tg, + 1)— x(t + 1). Here, y; corresponds to dx(t),
and z; corresponds to dx(t + 1) in Eq.(@). If the norms of y; and z; and the
corresponding temporal evolution is small enough, we can approximate the re-
lation between z; and y; by the linear equation: z; = G(t)y,;, where the matrix
G(t) is an estimated Jacobian matrix D f(x(t)) in Eq.(@). Then, we estimate
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G(t) by the least-square-error fitting which minimizes the average square error
S = ]\1/[ Zf\il |z; — G(t)y;|. In other words, we can estimate G(t) by the fol-
lowing equations: G(t)W = C, where W is the variance matrix of y;, and C'is
the covariance matrix between y; and z;. If W has its inverse matrix, we can
obtain G(t) from G(t) = CW ~*[2I12].

Because we do not know a future value of x(t), we cannot use dynamical
information of z;, and then cannot have direct information of G(t). To solve the
problem, we use the information of the nearest neighbor @(tx,) of x(t). Then,
we calculate a displacement vector y' = () — x(tx, ). Next, we can estimate the
Jacobian matrix G(ty,) at x(ty,) by the above procedure. If we define &(t + 1)
as the predicted future value of x(t), we can denote the predicted displacement
vector 2’ = &(t+1)—x(ty, + 1) by 2’ = G(t1,)y’. Then, we can predict (¢ + 1)
as follows: &(t + 1) = G(tg, )(x(t) — (tr,)) + x(tx, + 1). Repeating the scheme
for p time iteratively, we can predict the p step future of x(¢)[13].

We introduced another prediction method to estimate a dynamical system
SFLB]. First, in this method, we search for the near neighbors () (i =0, 1,.. ., K)
of z(t) on the reconstructed attractor. Then, we calculate a future value of x(t)
as

Zexp x(tk, —|—1/Zexp

where d; = |x(tg,) — (t)|. This method is called a weighted average prediction.

3 Estimating Prediction Intervals

As a conventional measure to evaluate the prediction accuracy, we can use a
normalized root mean square error:

N k N k
F = ZZ de t+ — l‘d(t—F 1)) / ZZ(wd(t + 1) — i‘d)z,

t=1 d=1
where N is the data length, z4(t + 1) is the d-th variable of a predicted point,
and Tg = Z x4(t). For evaluating the prediction accuracy, F is basic and es-

sential. However any prediction methods cannot predict future points perfectly.
Instead, it is important to offer a prediction interval in which the true future
point might be included.

3.1 Ensemble Prediction

Generally, the prediction intervals can be generated by the ensemble predic-
tion[I0] whose technical procedure is described as follows: first, we select several
ensemble samples (™) (t)(m = 0,1,2,..., M) from near neighbors x(t, ). In this
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paper, we set M = K, where K is the number of near neighbor data. We predict
a future state of (™ (t) as @™ (¢ + 1) with estimating f by some prediction

method, and we calculate the future of x(¢) as
| M
Bt+1)= m}; ™ (t+1).

Next, to perform multi-steps prediction, we predict the futures of @ (m)(t + 1),
respectively. Then, repeating this scheme for p times, we can predict the p step
future as ™ (t + p).

The prediction intervals can be calculated from the spatial distribution of
ﬁ:(m)(t + p). In this paper, the prediction intervals E(t 4 p) is defined by an
ellipse, the center of which is (t+1). Then, the equation of the ellipse is defined
by

d A2
zzt+
E(t+p) = Z 2

=1

where 21»(25 + p) is the i-th principle component, obtained by the application of

PCA to the data set :i'(m)(t +p),(m=1,2,...,M), and o; corresponds to the
variance.

3.2 Prediction Intervals by Using the Bootstrap Method

Because the ensemble prediction needs large data sets to evaluate ensemble prop-
erties, estimated prediction intervals might be unreliable in the case that we
cannot use large size data. In Ref.[3], we have already reported effectivity of
the bootstrap method[I1] for nonlinear prediction problem even if data size is
small. Thus, to evaluate more accurate prediction intervals and to perform stable
prediction, it is expected that the bootstrap method may work as well.

The bootstrap resampling scheme[I1] is described as follows. First, we se-
lected near-neighbor points of x(¢) to predict x(t). The data set is denoted
by D = {x(ty,), x(tr,), -+ ,x(tx, )}, where L is the number of near-neighbor
points to make a predictor. In this paper, we set L = M. Next, we performed
a sampling with replacement of D to obtain a new near-neighbor data set

D= {D(l’l)7 D% ... pUb ... 7D(l’L)}. Here, DY means the I-th sam-
pling with replacement at the first bootstrap trial. Then, we estimate a predictor

}(U) on each DMV

7o),

We repeated such bootstrap estimates for B times. Namely, the b-th bootstrap
predicted point is described by 9 (t+1) = }'(b’l) (D®D) whereb=1,2,...,B.
Next, we predict the future of each bootstrap predicted point {:i:(b’l)(t +1), -,

gL )(t +1)}. Therefore, predicted two-steps futures of bootstrap estimates was
described as &V (t42) whose size is (B-L)2. That is, this dimension is (B-L)P. If

, and we predict a future point of z(t) by 25V (t + 1) =
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we perform a p-steps prediction with the bootstrap method, the computational
load would grow exponentially. Thus, in this paper, at the second prediction
step, we randomly select B elements from {V (¢ +2)} to prevent the number
of bootstrap samples from exploding exponentially. Repeating this scheme for
p times, we can predict the p-step future of bootstrap estimates {:B (t +p)},
whose size is B2. Finally, we decided the prediction interval R(t+p) in the same
way as the ensemble prediction as described in 311

4 Numerical Simulations

To confirm the validity of estimating prediction intervals by the proposed method,
we applied the proposed method to an example test: the Tkeda map[14], which
is described as follows:

{x(t +1)=a+ b(x( )cos(0(t)) — y(t) bln(ﬁ(t)))
y(t+1) = b(x(t)sin(6(t)) + y(t) cos(8(t))),

0(t) =k — o/ (1+2°(t) + (1)),

where a, b, kK, and a are parameters. The Ikeda map is suitable to check the
validity of the proposed method because it has higher order nonlinearity. In
simulations, the parameters were set as a = 1.0, b = 0.9, kK = 0.4 and a = 6.0,
the data length of z(t) and y(t) is 1,000, respectively. Then, we disturbed the
system both by observational and dynamical noise. In this paper, the noise level
is quantified by the signal-to-noise ratio, which is calculated by SNR[dB] =
10log, 02 /07, where o2 is the variance of the original data and o7 is the variance
of Gaussian observational /dynamical noise.

For estimating prediction accuracy, we introduced a measure to evaluate the
prediction interval: we counted how many times the true point were included
in the prescribed prediction interval. The number is denoted by V', which is
averaged on several trials. We also introduced the size of prediction interval S,

defined by S,.( \/Zd 1 6%(t + p) in the case of the ensemble prediction, or

Sy(p) = \/Zd:l G2(t+p) in the case of the bootstrap method, and p is the
prediction step.

We compared two prediction methods: the Jacobian matrix estimation, and
the weighted average prediction. Figs[IH3l show the results of the comparisons
among four cases to estimate prediction intervals: the bootstrap method with
the Jacobian prediction or the Lorenz’ method of analogues, or the ensemble
prediction with the same local prediction methods. Figure [Tl shows the result of
the noiseless data, Fig[2l shows the case that the data are disturbed by observa-
tional noise and Figl3l shows the case that the data are disturbed by dynamical
noise.

To evaluate applicability of the proposed method to real data, the data might
be produced from a nonlinear chaotic dynamical system. we applied our method
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Fig. 1. Comparisons of four methods to estimate prediction intervals for noiseless data.
The horizontal axis shows the prediction steps p, and the vertical axis shows the esti-
mation accuracy V(p)/Sr(p).
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Fig. 2. The same as FiglIl but to the observational noise data

to the Japanese vowels /a/ which is example of a real time-series. This data is
suitable for benchmark tests because this data has been analyzed and discussed
in several studies[14-16].

5 Discussion

These results show that the bootstrap method is more reasonable to make effi-
cient prediction intervals if p is less than six. Namely, the bootstrap prediction
method adjusts intervals size more accurately and efficiently than the ensemble
prediction method. The performance of V/S, of the bootstrap method and the
ensemble method is almost the same as the observational/dynamical noise level
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Fig. 4. Results of the Japanese vowels /a/. The axis is same as Figll]

becomes larger. In the case of noiseless data, the bootstrap method with the
Jacobian prediction showed the best performance.

6 Conclusion

In this paper, we proposed a new framework for estimating the prediction in-
tervals by using the bootstrap method with local-linear prediction methods. In
particular, the proposed framework improves short-term predictability compar-
ing to the conventional ensemble prediction. Moreover, the bootstrap method
adjusts the size of the prediction intervals effectively according to the difficulty
of prediction. The authors would like to thank Dr. Hiroki Hashiguchi for his
valuable comments and discussions. The research of TT was partially supported
by Grant-in-Aids for Scientific Research (C) (No.17500136) from JSPS.
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