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To generate surrogate data in nonlinear time series analysis, the Fourier transform is generally used. In the
calculation of the Fourier transform, the time series is assumed to be periodic. Because such an assumption
does not always hold true, the estimation accuracy of the Fourier transformed data and thus the power spectra
is reduced. Due to such an estimation error, it is also possible that the surrogate test will lead to a false
conclusion; for example, that a linear time series is nonlinear. In this paper, we experimentally evaluated the
effects of data windows from the viewpoint of false rejections with several types of surrogate data. Our results
indicate that if the data length becomes shorter, the false rejections by the data windows are reduced to a
greater extent. However, if the data length is sufficient, the use of data windows is not a viable option. In the
worst possible case wherein the linear memory of the original data is very long as in the nonstationary case, the
critical length of the data for which the data windows were effective was approximately 1000.
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I. INTRODUCTION

Nonlinear time series analysis often use the method of
surrogate dataf1g for statistical significance testing of the
results. A surrogate time series is a reordered sequence that
preserves the statistical properties of the original data, such
as empirical histograms and power spectra. A comparison of
the statistical properties of the original and surrogate data
sets reveals whether or not the original data have nonlinear
properties. Moreover, it is also possible to determine the es-
sential properties of the original data by varying the pre-
served statistical properties.

To generate the surrogate data sets, the Fourier transform
is generally used for estimating the power spectra. In the
calculation of the transform, because the original data are
assumed to be periodic, gap effects always pose a problem.
Thus, the calculation accuracy of the Fourier transformsand
the power spectrumd is reduced. It is widely acknowledged
that the multiplication of a data window for estimating the
power spectra reduces such artifacts and thus counters this
problem. Several reports give the effects of a data window
f2g for evaluating the power spectra of the observed time
series.

However, no systematic results are available on the rela-
tion between the data-window effects and significance test-
ings by the method of surrogate data. We expected that the
data window could reduce false rejections. However, several
issues, such as which window has a better effect and what
relation exists between the effect and the number of data
points, have yet to be addressed.

In this study, we performed surrogate tests in which we
used the autoregressivesARd model as the original data. We
also used nearly nonstationary AR models with shorter leng-
hts to consider the case wherein false rejections occur easily.
In these cases, if a false rejection occurs, the surrogate test
concludes that the AR model has a nonlinear property. This
false conclusion is a serious problem in the field of nonlinear
time series analysis. Next, we also examined which data win-
dow is suitable for generating the surrogate data sets in order

to reduce such misleading false rejections. Moreover, we de-
termined the limit on the temporal epoch of the original data
for which the data windows are effective.

II. THE METHOD OF SURROGATE DATA

The method of surrogate dataf1g is frequently used be-
cause it is useful for obtaining reliable results in nonlinear
time series analysis. We must avoid the spurious identifica-
tion of deterministic chaos underlying the time series data. It
is well known that statistical control, such as the method of
surrogate data, is important to avoid such careless estimation
of nonlinear indices, for example, fractal dimensionsf3g or
Lyapunov exponentsf4g. In chaotic time series analysis, the
surrogate data sets are constructed to satisfy a null hypoth-
esis based on the existence of a linear stochastic process. By
comparing the statistics of the given data and the surrogate
data sets, it is possible to reject the null hypothesis if the
statistics of the original data differ significantly from those of
the surrogates. In other words, if the given data do not pos-
sess any nonlinear properties, the calculated statistics should
be almost equal to those of the surrogates. On the other hand,
if the given data are truly nonlinear, the statistics are differ-
ent from those of the surrogates.

In this study, we used three well-known algorithms for
generating the surrogate data: the Fourier transformsFTd
f5,6g, Fourier shufflesFSd f7,8g, and iterative amplitude ad-
justed Fourier transformsIAAFT d f9g.

A. FT surrogate

The FT surrogate algorithm completely preserves the
power spectrum of the original data completely; however, the
empirical histogram is destroyed. The algorithm for generat-
ing the FT surrogate is as follows.

s1d The Fourier transform is applied to the original data
to obtain the power spectrum.

s2d Preserving the power spectrum, the phase of the spec-
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trum is randomized by Gaussian random numbers, and the
randomized spectrum is symmetrized to obtain a real-time
series.

s3d The inverse Fourier transform of the data generated
during the second step produces a FT surrogate that pre-
serves the power spectrum of the original time series.

B. FS surrogate

Since the FT surrogate does not preserve the empirical
histogram, a different algorithm for generating the surrogate
data was proposedf7,8g. The FS surrogate preserves not only
the power spectrum but also the empirical histogram of the
original data. The algorithm for generating the FS surrogate
is as follows.

s1d We generate the FT surrogate data of the original time
series.

s2d We shuffle the original data such that the rank order is
identical to that of the FT surrogate data. Here, the rank
order is the order of the state values in the time series.

Although the FS surrogate preserves the empirical histo-
gram completely, it cannot preserve the power spectrum, as
the FT surrogate does.

C. IAAFT surrogate

The IAAFT surrogate preserves the power spectrum more
accurately than the FS surrogate. Moreover, the IAAFT sur-
rogate completely preserves the empirical histogram of the
original time series. The algorithm for generating the IAAFT
surrogate is as follows.

s1d We estimate the power spectrum of the original time
series by the Fourier transform.

s2d We generate the FS surrogate data of the original time
series.

s3d The Fourier transform is applied to the FS surrogate.
Here, the power spectrum is replaced by that of the original
time series estimated in the first step; however, the phase of
the spectrum is preserved.

s4d The inverse Fourier transform is applied to the data
obtained in the third step. Although the generated time series
exhibits the same power spectrum as the original time series,
its empirical histogram is different from that of the original.

s5d To preserve the empirical histogram of the original
data, the original time series is reordered to obtain the same
rank order as that of the time series generated by the fourth
step. The reordered time series is the IAAFT surrogate.

s6d If the discrepancy between the power spectrum of the
original and the IAAFT surrogate obtained in the previous
step is not sufficiently small, we repeat the above steps by
replacing the FS surrogate with the IAAFT surrogate in the
third step. By repeating these steps several times, the power
spectrum of the original data can be preserved more accu-
rately than with the FS surrogate.

III. IMPROVING THE CALCULATION OF THE FOURIER
TRANSFORM BY APPLYING THE DATA WINDOW

During the process that generates the surrogate data, we
calculate the Fourier transforms. This calculation becomes

fast and accurate if we use the fast Fourier transformsFFTd
f10g. However, there exists a possibility that its accuracy will
worsen. For example, if the sampled original data gives a
noiseless sinusoidal curve, the data must have a single fre-
quency component and the calculated power spectrum must
have only a single peak. However, if the length of the
sampled original data does not completely match the period,
several peaks leak from the true peak, and these leakages
adversely affect the estimation of the power spectrum. The
reason is that in the calculation of the Fourier transform, the
original data are assumed to be periodic. If the sampled
original data do not have the same period as the observation
epoch, gaps exist on both sides; consequently, the calculation
accuracy of the power spectrum worsens.

In most cases of real-time series analysis, the original data
rarely have the same period as the observation epoch. Even if
we use a part of the data by resampling several periods from
the original data to reduce the gaps at both sides, it could
eliminate essential information that the original data might
contain.

Here, we introduced a transformation of the original data
by data windowsf10g to reduce both sides of the original
data to zero or to reduce these gaps almost to zero. We used
the data windows for generating each surrogate set and ex-
amined the usefulness of data windows for the surrogate tests
f9g.

For the calculation of the FFT in each process of gener-
ating the surrogate data, we used the following three data
windows:

s1d the Parzen window

wPstd = 1 −U t − 1
2sN + 1d

1
2sN − 1d

U , s1d

s2d the Hanning window

wHstd =
1

2
F1 − cosS 2pt

N − 1
DG , s2d

and
s3d the Welch window

FIG. 1. Shapes of the data windows.
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wWstd = 1 −F t − 1
2sN + 1d

1
2sN − 1d G2

, s3d

whereN is the data length. The shapes of these data windows
are shown in Fig. 1.

Let us describe the discrete Fourier transformX̃skd of the
original dataxstd with a data windowwstd. Thus, we have

X̃sk + 1d = o
t=0

N−1

xst + 1dwst + 1de−j2pkt/N

= o
t=0

N−1F 1

N
o
k8=0

N−1

Xsk8 + 1dej2pk8t/NGwst + 1de−j2pkt/N

=
1

N
o
k8=0

N−1

Xsk8 + 1do
t=0

N−1

wst + 1de−j2psk−k8dt/N

=
1

N
o
k8=0

N−1

Xsk8 + 1dWsk − k8 + 1d, s4d

whereXsk+1d andWskd are thesk+1dth components of the
Fourier transforms ofxstd andwstd, respectively;k is an in-
dex,k=0,1,… ,N−1; and j is the imaginary unit. As shown
in Eq. s4d, using data windows implies smoothingXskd by
the weightWskd. If the leakages of the power spectrum do
not exist, using data windows would adversely affect the
estimation accuracy of the power spectrum.

IV. NUMERICAL TESTS AND DISCUSSIONS OF
FALSE REJECTION

In this section, to calculate the false rejection rates, we
used the first-order autoregressive ARs1d model with a
=0.995 as the original datum. ARs1d is defined by

xst + 1d = axstd + hstd, s5d

where hstd,Ns0,1d ,xs1d,Ns0,1d, and a is a parameter.
Whena,1, ARs1d is stationary and closely resembles white
noise in the higher frequency regions. Whena=1, ARs1d is
not stationary; however, it is equivalent to the Brownian mo-
tion whose power spectrum is of the type 1/fa. In this case,
the rejection is truef11g. As shown in Fig. 2, we estimated
the ensemble varianceshxstdj

2 of xstd by varying the parameter

a of ARs1d. Because the condition of stationarity is thatshxstdj
2

is temporally constant, we must extract a temporal subset of
data for numerical experiments to generate artificial data that
satisfies the condition of stationarity. In addition, the en-
semble average ofxstd must also be temporally constant. In
the present paper, we used ARs1d with a=0.995, and we did
not use the transient part of the data fromt=1 to 1000 but the
succeedingN points as data. Next, we varied the data length
N: N=64, 128, 256, 512, 1024, 2048, and 4096. As the data
length shortened, we assumed that the problem of the gap
between the sampled data and its period becomes more seri-
ous, resulting in easy occurrence of a false rejection.

For each test, 19 surrogates were created by the FT, FS,
and IAAFT algorithms with and without the data windows

introduced in Sec. III. When we used a shorter data length,
we were unable to reliably estimate the nonlinear indices
such as the fractal dimensions and the Lyapunov exponents
f12g. Instead, we used a local linear approximation predic-
tion method f13,14g in a five-dimensional delay space
f15,16g and the normalized mean square errorf17g for esti-
mating its prediction error. The null hypothesis is rejected at
the 95% level of significance if the prediction error for the
data is smaller than that of the 19 surrogates. The number of
false rejections was estimated by performing 500 indepen-
dent tests. Since the original data were generated by ARs1d,
any rejection is a false rejection.

Figure 3 shows the results of the false rejection rates with
the FT surrogates. When data windows were not usedsre-
sults are labeled as “No window”d, the false rejection rates
decreased as the data lengthN increased. The reason for this
is as follows: If the number of sampled data increased, the
data could contain several periods; thus, we required fewer
data to arrange both sides of the sampled data. In other
words, the sampling gap at both sides was reduced. Because
the Fourier coefficients are decided by the inner products
between the sampled data and the fundamental waves, the
influence of the sampling gap was generally reduced when

FIG. 2. Characteristics of the ensemble varianceshxstdj
2 of the AR

modelxstd by varying the coefficienta of the AR model.

FIG. 3. Results of the false rejection rates with the FT surrogate
data.

EFFECTS OF DATA WINDOWS ON THE METHODS OF… PHYSICAL REVIEW E 71, 056708s2005d

056708-3



the sampled data included more periods. In the case of sta-
tionary data, the data have more periods as the data length is
larger. Thus, because the data lengthN is large, the power
spectrum is estimated more accurately and the false rejection
rate is reduced. However, because we cannot reduce the in-
fluence of the sampling gap of the period, setting the sam-
pling rate higher to increase the data length is futile.

Next, when data windows were used, they were very ef-
fective as the data lengthN was smaller. It should be noted
that using data windows smoothes the power spectrum, as
shown in Eq.s4d. Thus, it is preferable to refrain from using
the data windows in the case whereN is large because the
influence of the sampling gap is already smaller. Moreover,
the wide variety of prediction accuracies of the surrogate sets
is considered to be another reason for the reduction in false
rejection rates at smaller values ofN. Because the distribu-
tion of the statistics of the surrogates has a large tail, the
rejection did not occur easily. However, in the case in which
the data window was not used, the false rejection rate was
very high. In other words, ifN was small, the use of data
windows afforded a considerable benefit. Moreover, when
we used a data window with the FT surrogate, the Welch
window was found to be the best choice.

Figure 4 shows the results of the false rejection rates with
the FS surrogates. In all cases, the false rejection rates in-
creased as compared to those observed in the case of the FT
surrogates. This is because although the power spectrum was
completely preserved by the FT surrogate, it was destroyed
in the second step of generating the FS surrogate data. Fur-
ther, along with the results of the FT surrogates, the false
rejection rates were restricted by a trade-off between the
sampling gap depending onN and the smoothing error of the
data windows. When we used a data window with the FS
surrogate, the Welch window was once more found to be the
better choice.

Next, to modify the power spectrum destroyed by the FS
surrogate, we used the IAAFT surrogate with and without the
Welch window. We consider two methods for applying the
data windows to the IAAFT surrogates as follows.

Method 1. We applied the Welch window in the first and
second steps for generating the IAAFT surrogate.

Method 2. We applied the Welch window in the first, sec-

ond, and third steps for generating the IAAFT surrogate.
We adopted method 2 because it is very important to in-

vestigate whether the use of data windows in the third step
for generating the IAAFT surrogate improves the estimation
accuracy of the power spectrum of the FS surrogate. Because
both sides of the FS surrogate data were almost completely
arranged, there existed a possibility that the smoothing error
of the data windows adversely affected the estimation accu-
racy.

On the basis of Fig. 5 we confirm that method 1 was
superior in almost all cases. In addition, method 1 was better
than method 2 from the viewpoint of numerical costs. Fur-
ther, we also confirmed that the IAAFT surrogates modified
the power spectra destroyed by the FS surrogates by iterating
the fifth step of the IAAFT surrogate generating algorithm
since the false rejection rates were improved. Moreover,
along with the results of the FT and FS surrogates, the false
rejection rates were based on a trade-off between the sam-

FIG. 4. Results of the false rejection rates with the FS surrogate
data.

FIG. 5. Results of the false rejection rates with the IAAFT sur-
rogate data.
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pling gap depending onN and the smoothing error of the
data window.

On the basis of these numerical tests, we concluded that
data windows, particularly the Welch window, reduced the
false rejection rates in the case of a shorter data length, and
the data windows were useful not only for the FT surrogate
but also for the FS and IAAFT surrogates. In this paper, we
tested for nonlinearity in the data by performing a local lin-
ear fit in a five-dimensional delay space. Even for clean cha-
otic data, such a fit would give a substantial amount of fore-
cast errors if the data length were relatively shorter. In such a
case, we cannot obtain any conclusive results. However, it is
definitely important to test the reliability of methods for short
time series. In our results, the applications of data windows
remarkably reduced the false rejections of linear time series,
even though there are limits of the applications.

Moreover, in the worst possible case wherein the linear
memory of the original data is very long, as in the nonsta-
tionary case, the critical length of the original data for which
the data windows were effective was approximately 1000.

V. CONCLUSIONS

In this paper, we examined the effects of data windows on
the calculation of the Fourier transform for generating the
FT, FS, and IAAFT surrogate data. We demonstrated that the
use of data windows, particularly the Welch window, reduces
the false rejection rates in the case of a shorter data length,
and the data windows were useful not only for the FT surro-
gate but also for FS and IAAFT surrogates. We did not insist

that the use of subsampled data was preferable for each sur-
rogate test even if we applied a data window. By discussing
the relation between the data length and the rejection ability
of each surrogate test, we concluded that the false rejection
rates were extremely low in the case of a shorter data length
not only due to the effect of the data window but also due to
the wide variety of prediction accuracies of the surrogate
sets. Hence, we strongly recommend that data windows be
used when the length of the sampled data is short.

In addition, when the data window is used, it is necessary
to consider the trade-off between the sampling gap depend-
ing on the data length and the smoothing error of the data
window. On the basis of our results, the balance point of the
trade-off, i.e., the point at which the data windows were ef-
fective, corresponded to the point at which the original data
length is approximately 1000 in the worst possible case
wherein the linear memory of the original data is very long,
as in the nonstationary case. If the linear memory is shorter,
the data length at the critical point might be shorter since the
effect of the sampling gap reduces. Thus, the trade-off be-
tween the sampling gap depending onN and the smoothing
error of the data window may depend on the type of power
spectrum of the original data. It is important to examine this
trade-off in greater detail in future studies.
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