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Algorithms for generating surrogate data for sparsely quantized time series
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Abstract

The method of surrogate data is frequently used for a statistical examination of nonlinear properties underlying original data. If surrogate data
sets are generated by a null hypothesis that the data are derived by a linear process, a rejection of the hypothesis means that the original data
have more complex properties. However, we found that if an algorithm for generating surrogate data, for example, amplitude adjusted Fourier
transformed, is applied to sparsely quantized data, there are large discrepancies between their power spectrum and that of the original data in
lower frequency regions. We performed some simulations to confirm that these errors often lead to false rejections.

In this paper, in order to prevent such drawbacks, we advance an extended hypothesis, and propose two improved algorithms for generating
surrogate data that reduce the discrepancies of the power spectra. We also confirm the validity of the two improved algorithms with numerical
simulations by showing that the extended null hypothesis can be rejected if the time series is produced from chaotic dynamical systems. Finally,
we applied these algorithms for analyzing financial tick data as a real example; then we showed that the extended null hypothesis cannot be
rejected because the nonlinear statistics or nonlinear prediction errors exhibited are the same as those of the original financial tick time series.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Real time series data often show complex behavior.
This complexity might be produced by either a stochastic
mechanism or a nonlinear deterministic, possibly chaotic
mechanism. If it is produced from a linear stochastic
mechanism, its power spectrum is the only information for
understanding the system, and more detailed information does
not exist. However, if the system is derived from a nonlinear
deterministic dynamical system, it is necessary to understand
the system in greater detail for predicting and controlling such
complex phenomena [1] from information other than power
spectra. Actually, nonlinearity is often an essential origin for
complex behavior. Thus, it is important to examine whether
nonlinearity exists through time series analysis.

For nonlinear time series analysis [2], the method of
surrogate data [3] is often used to test analyzed results that may
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be spurious due to artifacts such as a smaller number of data
points and lower qualities of measurements in the original data.
Surrogate time series is a shuffled time series of the original
data, but it preserves some statistical properties of the original
data such as empirical histograms and/or power spectra. By
comparing the properties of the original data with those of
surrogate data sets from the viewpoint of nonlinear statistics,
we can discuss whether the original data have the nonlinear
property.

In actual analysis, all experimental data are discretized
(sampled) and quantized (digitized) to a greater or lesser extent.
In particular, we often have to analyze coarsely quantized
time series data because the resolution for representing time
series values is poor. In addition, any modern time series
analysis methods using digital computers must always quantize
the observed analog time series data, for example, using
an analog-to-digital converter, before inputting them into
digital computers. In other words, even if state values are
generated from a smooth dynamical system, which makes them
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continuous, numerical analyses always require quantized values
of time series data.

A typical example of the coarsely quantized time series is a
financial time series that fluctuates within finite decimal points.
In fact, financial data are often analyzed using the nonlinear
dynamical system theory to investigate the possibility that it has
nonlinearity [4]. In particular, the method of surrogate data is
often used to evaluate possible nonlinearity in financial data [5].
Thus, it is very important to clarify whether and how the coarse
quantization in an observed time series affects analysis results
by using the method of surrogate data.

In the present paper, we show that a false rejection occurs
if we blindly apply the amplitude adjusted Fourier transformed
(AAFT) algorithm [3,6] to such coarsely quantized time series
data. If a false rejection occurs in analyzing a stochastic
linear time series, the surrogate test concludes that the
stochastic linear time series has more complex properties than
a corresponding null hypothesis. Thus, such false rejections
would lead to a fatal conclusion.

In the following sections, in order to resolve the issue, we
first advance a null hypothesis for such a coarsely quantized
time series, and propose two corresponding algorithms, which
are modifications of the original AAFT surrogate. Secondly, we
evaluate the validity of the two modified algorithms for coarsely
quantized time series data via numerical simulations. Finally,
we apply these algorithms to financial data as an example of
real data analysis in order to investigate whether the coarse
quantization might affect the analysis [4,5].

2. The method of surrogate data

The method of surrogate data is useful for obtaining reliable
results in nonlinear time series analysis [3]. Namely, it avoids
spurious identification of deterministic chaos underlying time
series data through a careless estimation of nonlinear indices
such as fractal dimensions [7] or Lyapunov exponents [8].
Surrogate time series is a stochastic time series, and it is
constructed by satisfying a null hypothesis based on some linear
and stochastic characteristics. By comparing the nonlinear
indices of the observed data and surrogate data sets, it is
possible to decide whether a linear process is sufficient for
describing the observed data. If the observed data do not have
nonlinear deterministic properties but have linear ones, the
estimated properties become almost the same as those of its
surrogates. On the other hand, if the original data cannot be
described using a linear system, the properties are completely
different from those of the surrogates.

In the present paper, we primarily aim to develop an
algorithm for generating surrogate data [3], where the null
hypothesis is that the original data are generated by a linear
stochastic process; however, the original data are observed
through a static monotonic nonlinear transformation with a
coarse quantization. In order to develop the algorithm, we
extended the algorithm for generating amplitude adjusted
Fourier transform (AAFT) surrogate data [3,6]. The AAFT
surrogate data are generated by the following steps:
1. We produce Gaussian random time series η(t) ∼ N (0, 1)

and shuffle the temporal order to obtain the same rank order
as with the original time series X (t). Here, the rank order
is defined as an order of state values of a time series [3].
In this process, the shuffled time series ω(t) corresponds
to a linear stochastic process and X (t) is considered to be
a realization of a transformation of ω(t) through a static
monotonic nonlinear function h(·). That is, X (t) = h(ω(t)).

2. Since the shuffled time series ω(t) is a realization that
can be characterized only by its power spectrum, we
apply the Fourier transformed (FT) algorithm [3] to ω(t).
The FT algorithm is as follows: the Fourier transform is
applied to a target time series, in this case ω(t), and its
power spectrum is obtained. Next, preserving a symmetry
of phase components of the Fourier transform, the phase
components are randomized. Then, the inverse Fourier
transform generates an FT surrogate, which preserves the
power spectrum of the target time series ω(t). Namely, in
this process, we make an FT surrogate ω̂(t) of ω(t), which
has exactly the same power spectrum as ω(t).

3. We shuffle the original data X (t) to obtain the same rank
order as the FT surrogate data ω̂(t) given in the previous
step. Here, we again consider a static monotonic nonlinear
function h(·). Namely, X̂(t) = h(ω̂(t)), and X̂(t) is called
the AAFT surrogate data version of X (t).

The AAFT surrogate X̂(t) completely preserves the empirical
histogram and approximately preserves the power spectrum of
the original data X (t).

For preserving the power spectrum of the original time
series, we have other algorithms besides the AAFT—the
Fourier shuffle (FS) algorithm [3,9] and the iterative amplitude
adjusted Fourier transformed (IAAFT) [3,10] algorithm.
Although these algorithms for generating surrogate data often
exhibit better abilities for preserving the original power
spectrum than the AAFT, we considered an extension of the
null hypothesis of the AAFT algorithm in the present paper.
The reason is that it is still important to test the extended null
hypothesis explicitly using an algorithm which is based on the
extended null hypothesis. It is true that if we use an algorithm
for producing the IAAFT [3,10] or the FS surrogates [3,9], we
can generate surrogate data having the same power spectrum
as the original data. Even so, a hypothesis testing using the
extended algorithm of the AAFT surrogate is still important,
because we can explicitly test the null hypothesis in a more
direct way.

3. Modification of the surrogate method

In this section, we discuss the application of an AAFT
surrogate algorithm to a coarsely quantized time series. As
introduced in Section 2, the hypothesis of the AAFT surrogate
has a static monotonic nonlinear function h(·), which is used
for X (t) = h(ω(t)) and X̂(t) = h(ω̂(t)). In the present
paper, we generalized the hypothesis of the function h(·) as
a static monotonic nonlinear function including its digitized
form. By using the generalized hypothesis, we can perform
the AAFT surrogate test for a coarsely quantized time series
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Fig. 1. (a) An example of an original time series X (t). The time series ω(t) in (b) is generated by the first process of creating the original AAFT [3]. The time
series ωP (t) in (c) and ωA(t) in (d) are generated by the two improved algorithms: the P-AAFT and A-AAFT algorithms, respectively. We found that our proposed
algorithms modified the blurred spurious shape of the time series ω(t) produced by the original algorithm for creating AAFT.
with the steps 1–3 of the AAFT algorithms, just introduced
in Section 2. The important point is not to apply the AAFT
algorithm carelessly, especially when deciding the rank order,
because it might generate an incorrect surrogate time series.
Subsequently, we discuss a more careful way of ordering the
rank order between X (t) and ω(t) (X̂(t) and ω̂(t)).

3.1. Problems in deciding a rank order

In the case of applying the original AAFT algorithm to
a coarsely quantized time series, a severe problem exists in
deciding its rank order; an ordinary sorting algorithm defines
earlier temporal indices with the same state value to have a
lower rank order. Here, the essential point is that the wave
form of ω(t), produced by the first step of generating AAFT
surrogate data, has a different form to the original data X (t), as
shown in Fig. 1(a) and (b). In particular, the time series ω(t) in
Fig. 1(b) shows a large discrepancy from the original in low
frequency regions, and thus its power spectrum might differ
from the original one. Then, it is natural to expect the AAFT
surrogate data not to preserve the power spectrum and linear
property of X (t). Thus, it is possible that the null hypothesis is
rejected even if the hypothesis is correct for the original data.

3.2. Modified algorithms

In order to eliminate the source of a false rejection, we
modified the method for deciding the rank order between X (t)
and ω(t). In the present paper, we discuss two modifications.
First, to prevent loss of information of the same state values,
we added uniform random numbers of a very small level
to the original data X (t) in order to shuffle the rank orders
of the state values. Here, the dynamic range of the uniform
random number is between zero and mint {1X (t)}, where
1X (t) = X (t)− X (t −1). We call this the P (perturbed)-AAFT
algorithm. Fig. 1(c) shows the time series ωP (t) generated
by the above procedure against ω(t) in the first process of
generating AAFT surrogate data. Although this time series
includes higher frequency components, the difference can be
canceled by shuffling the discretized original data X (t) in the
third process of generating AAFT surrogate data. However, the
shuffling could not cancel the low frequency difference of the
AAFT surrogates, as shown in Fig. 1(b).

Second, we recorded each group having the same state
values of the original data X (t). Then, each set of ω(t) having
the same rank order as each group of X (t) is averaged. We call
this the A (averaged)-AAFT algorithm. Fig. 1(d) shows the time
series ωA(t) improved by the A-AAFT algorithm. Although the
A-AAFT algorithm is considerably more expensive than the
P-AAFT algorithm, because it searches for groups having the
same state value, the time series wave form ωA(t) is almost
the same as the original X (t); using the A-AAFT algorithm
might preserve the original power spectrum more accurately
than using the P-AAFT algorithm.

To produce a surrogate time series, the P-AAFT and A-
AAFT surrogates also follow the same second and third steps of
the AAFT algorithm introduced in Section 2 with the improved
ω(t), that is, ωP (t) and ωA(t).
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Fig. 2. Power spectra of the original data, ordinary AAFT, P-AAFT, and A-AAFT surrogate data in the case that q = 7 bits, N = 2048 and d = 3. In each plot,
solid lines are averages of 500 trials, and dotted lines show 5% confidence intervals. The horizontal axes are frequency f , and the vertical axes are power spectrum
P( f ).
4. Simulations

False rejection is a result of the difference between the
power spectrum of the original data and that of the surrogate
data. Then, in order to evaluate the performance of surrogate
algorithms, we investigated the discrepancy of the power
spectra with respect to the original data one by calculating the
normalized mean square error:

E =

∑
f
(P( f ) − P̂( f ))2

∑
f
(P( f ) − P̄( f ))2

, (1)

where P( f ) is the power spectrum of the original data; P̂( f )

the power spectrum of its surrogate; P̄ the average of P( f );
and f a frequency component. We then used numerical data
and real data for evaluating E and for performing surrogate
tests.
4.1. Numerical data: AR model and Ikeda map

For simulations, we used an autoregressive (AR) model [1]:

x(t + 1) = ax(t) + η(t), (2)

where η(t) is a Gaussian random number with zero mean
and unit variance. In the present paper, we set a < 1 to
satisfy the stationarity condition, that is, the null hypothesis of
the original AAFT surrogate method. Next, to follow the null
hypothesis, we transform x(t) into W (t) = x(t) × |x(t)|d ,
which is a monotonic nonlinear functions [10]. Outputs from
the monotonic nonlinear function, W (t), correspond to the
observed data. However, since we would like to discuss whether
the original data are coarsely quantized, we quantized W (t)
using q bits to obtain the observed data X (t). In Fig. 2, we
show the power spectra of the original AAFT, P-AAFT, and A-
AAFT surrogate data of X (t), whose data length is N , when
q = 7 bits, N = 2, 048, and d = 3.
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Fig. 3. The characteristic property of E for several parameters. Each E is estimated by averaging 500 trials. The variable a is the coefficient of the AR model in Eq.
(2). Although (a) shows that the differences among three types of AAFT algorithms were not significant, changing one of the parameters increased the differences,
as shown in (b), (c).
We found that the AAFT surrogates have considerably larger
powers in the lower frequency regions than the original data.
However, the power spectra of P-AAFT and A-AAFT exhibit
good results because they preserved the statistical features of
the original data more accurately.

In order to investigate the characteristics of E with several
parameters, we varied the parameters q , N , and d . In each
situation, we simulated 500 trials of an AR model and its
surrogate data sets, and then calculated each E using Eq. (1).
Fig. 3 shows the average values of E . By comparing Fig. 3(a)
with (b), we confirmed that the advantage of P-AAFT and
A-AAFT disappeared gradually as the quantization level q
increased. By comparing Fig. 3(a) with (c) or (d), if the data
length N is large as shown in Fig. 3(c) or the nonlinear level d
is higher as shown in Fig. 3(d), we confirmed the advantage
again. As discussed in Section 3.2, in the third process for
generating X̂(t) by shuffling X (t) following the rank order of
ω̂(t), the high frequency components of P-AAFT (Fig. 1(c)) did
not make the performance poorer (dashed lines with plus signs
in Fig. 3(c) and (d)); however, the low frequency components
that were not removed by AAFT (Fig. 1(b)) affected the
performance (solid lines in Fig. 3(c) and (d)). However, in
any situation, the A-AAFT algorithm stably shows a better
performance than the P-AAFT algorithm.

Next, we show the results of surrogate tests with an AR
model in Fig. 4(a) and (b). For each test, 19 surrogates were
created using the AAFT, P-AAFT, and A-AAFT algorithms
introduced in Section 3. When we used considerably quantized
data, we were unable to reliably estimate nonlinear indices such
as correlation dimensions [2]. Instead, we used a local linear
approximation prediction method for the data embedded in a
D-dimensional delay space [2]. We used the first half of a
time series for learning, and then we predicted its second half
for evaluation. Here, we predicted D future steps because the
same values tend to continue in quantized time series. Then, we
calculated the normalized mean square error as the prediction
error:

E =

∑
t
(X (t) − X̂(t))2∑

t
(X (t) − X̄(t))2

, (3)

where X (t) is the original time series, X̄ is the average of X (t),
and X̂(t) is the predicted time series. The null hypothesis is
rejected at 95% level of significance on the basis of two-tailed
tests. If the prediction error for the original data is smaller than
that for the 19 surrogates, this is defined as under-rejection; if
the prediction error for the data is larger than that for the 19
surrogates, this is defined as over-rejection. To estimate each
rejection rate, we performed 200 independent tests. Because the
original data are from the AR model, any rejection is a false
rejection.

Fig. 4(a) shows the results of surrogate tests with the AR
model in the case of q = 4 bits, d = 3, N = 2048, and D = 5.
Except for a = 1, the under-rejection rates of AAFT surrogates
are larger because the AAFT surrogate data have false low
frequency components. Namely, this false low frequency, that
is, false long-term memory, makes the prediction error small
unfairly. On the other hand, the over-rejection rates of AAFT
surrogates are as small as those of the proposed surrogates. If
a = 1, the AR model is not stationary and the rejection is a
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Fig. 4. The rates of rejection, over-rejection, and under-rejection, by surrogate
tests for (a) the AR model (q = 4, d = 3, and N = 2048), and (b) the AR model
(q = 7, d = 3, and N = 2048). (c) The Ikeda map (q = 4 and N = 2048)
disturbed by a Gaussian random noise. Each data set was embedded in D = 5-
dimensional state space for prediction. In (a) and (b), a is the coefficient of the
AR model.

true one. Thus, each performance of three surrogate methods is
valid even if a = 1. In any case, the proposed surrogates show
a good performance in the reliable surrogate test. Fig. 4(b) is
the same as Fig. 4(a) but with q = 7 bits. The over-rejection
rates of AAFT surrogates are reduced because the observed data
X (t) become smoother. However, the proposed surrogates are
superior to the ordinary AAFT surrogate as well as the result
shown in Fig. 4(a).

To examine whether the proposed surrogates reduce the
power of the surrogate test, we used the Ikeda map [2]:
{
x1(t + 1) = q + b(x1(t) cos(θ(t)) − x2(t) sin(θ(t)))
x2(t + 1) = b(x1(t) sin(θ(t)) + x2(t) cos(θ(t))) (4)

where θ(t) = κ − α/(1 + x2(t) + y2(t)). We set q = 1.0, b =

0.9, κ = 0.4, and α = 6.0.
For simulations, to consider the case where the nonlinearity

is disturbed by the observation noise, we disturbed the first
variable x1(t) of the Ikeda map (N = 2048) using Gaussian
random noise with zero mean. Here, we defined the noise rate
R as the ratio of the variance of the Gaussian random noise to
that of the original time series x1(t). Then, we quantized the
time series by q = 4 to obtain a coarsely quantized time series
X1(t).

Fig. 4(c) shows the rejection rates for the surrogate tests
for the Ikeda map x1(t) obtained by using AAFT, P-AAFT,
and A-AAFT algorithms. For surrogate tests, we estimated
the prediction error of each data set embedded in D = 5-
dimensional state space for prediction. As results, we can
confirm that using the proposed algorithms, P-AAFT and A-
AAFT, does not reduce the power of the AAFT surrogate test
because the rejection rates for each of the algorithms are almost
the same for all noise rates.

4.2. Application to real data analysis

Investigating real data and deriving heuristic laws from them
is very effective for understanding the mechanism of a system.
Recently, in the academic field of econophysics [4], such merits
of real data analysis have been emphasized. Some theories on
a financial system have been derived by such strategies, and
mechanisms have been described using heuristic laws rather
than theoretical suppositions. Thus, reliable analytic tools are
desired for such studies. However, every financial time series
moves within finite decimal points; careless use of the method
of surrogate data might lead us to a misunderstanding. In
real data analysis, there often exists a case where we must
analyze quantized time series to investigate heuristic laws.
Here, we describe how a real financial time series was used in
order to confirm the validity of the proposed AAFT surrogate
algorithms.

As the real financial time series, we used middle price
movements M(t), provided as tick data, between the U.S. dollar
and the Swiss franc observed in the real interbank market [11],
as shown in Fig. 5. In the present paper, we denote ticks by
t as well as time. The tick data had 281, 634 ' 218 points,
but the number of state values was only 369 (types), which
corresponds to 8.53 bits. From the analysis, E for the AAFT,
P-AAFT, and A-AAFT algorithms had the values 3.88, 0.33,
and 0.31, as shown in Fig. 6. The results indicated that the P-
AAFT and A-AAFT algorithms are effective for the analysis of
real data. Moreover, we confirmed that the AAFT surrogate had
considerably larger powers in lower frequency regions than the
original data. Such discrepancies lead to a false rejection.

Then, we performed surrogate tests of the financial time
series M(t) with three surrogate algorithms. As a statistic
for surrogate tests, we used the prediction error, described in
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Fig. 5. The main figure shows increases and decreases of middle prices M(t) of the U.S. dollar versus the Swiss franc, whose length is 281 634 [11]. The embedded
figure is an enlargement of the tick series, and the horizontal indices are from t = 19 500 to t = 20 000.

Fig. 6. The same as Fig. 2, but for the middle price movements M(t). The values E shown in each figure are the relative discrepancies in Eq. (1) between two power
spectra: of the original data and of the surrogate data.

(a) D = 5. (b) D = 10.

Fig. 7. The results of the surrogate test for the middle price movements M(t) obtained by using AAFT surrogates (top), P-AAFT surrogates (middle), and A-AAFT
surrogates (bottom). The horizontal axis of each figure means the correlation coefficient between a predicted series and the true series. Short black bars show the
prediction errors of the surrogate data and long blue bars show the prediction errors of the original data. The embedding dimensions for prediction D are (a) 5 and
(b) 10. No surrogate test rejects the null hypothesis. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
Section 4.1, with D = 5 or D = 10. The results are shown in
Fig. 7. The differences among the three surrogate tests were
not confirmed; no surrogate test rejects the null hypothesis.
However, since the ordinary AAFT surrogate cannot follow
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the null hypothesis from the viewpoint of the extended null
hypothesis introduced in the present paper, the introduction of
the surrogate tests is indispensable. In other words, we must use
the P-AAFT and/or A-AAFT algorithms for a reliable surrogate
test even if the results derived are the same.

5. Conclusions

In the present paper, we showed the disadvantages of using
the surrogate data method for coarsely quantized data and
proposed two improved AAFT algorithms: the P-AAFT and A-
AAFT algorithms. Then, we confirmed the validity of the two
improved algorithms. The A-AAFT algorithm is better than the
P-AAFT algorithm from the viewpoint of the discrepancy of
the power spectrum from the original time series one. These
algorithms were useful for avoiding spurious low frequency
components of the AAFT surrogates. Moreover, from the
results of the surrogate tests obtained by using these three
AAFT algorithms, we were able to confirm that the proposed
algorithms can reduce false rejections and can provide us with
a more reliable surrogate test.

It must be emphasized that the proposed algorithms did not
make the performance poorer if the observed time series had
sufficient resolution. Of course, since the problem of the rank
order of the same state value does not exist, using P-AAFT
and A-AAFT algorithms has little effect. That is, ω(t), ωP (t),
and ωA(t) are almost same. However, because the proposed
algorithms are very simple, even if the data for analysis are
well behaved, we recommend using the proposed algorithm for
improving the reliability of the analysis.
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