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Abstract

In the present paper, we analyze the complex interaction among three macroscopic variables,
dealing time intervals, spreads between ask and bid prices and price movements, observed in
actual interbank exchange markets. For this analysis, we propose a new model of interbank
exchange dealings as a statistical system integrated by many dealers’ actions with the methods
of statistical physics. For evaluating the plausibility of our model, we compare outputs from the
proposed model with the real data by reconstructing a state space with the above three variables,
observing ensemble behavior in each day and estimating statistical properties. As a result, we
can con2rm that our model is plausible, and we perform the above analysis with our model from
the viewpoint of statistical physics.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, several pioneering studies [1–3] have discussed complex behavior
of 2nancial phenomenon from the viewpoint of statistical physics. Before these stud-
ies [1–3] have been published, 2nancial phenomena were not treated as physics, since
2nancial phenomena were often considered to be disturbed by dealers’ mind and exter-
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nal information. However, it has been clari2ed that global dealers’ minds and actions
follow statistical and objective laws [1–3] in an open market even if many dealers trade
freely with sharing almost the same information. Namely, it is very useful to apply the
concepts and methods of statistical physics to 2nancial phenomena. Then, another inter-
esting studies have been reported [4–12], which are often referred as Econophysics [13].
However, the variety of discussing on 2nancial activities is not wide yet. In particular,

very few discussions have been made on the decision mechanism of bid and ask prices
of dealings in interbank exchange markets, even in the 2eld of economics [14]. One
of its reasons is that the modeling of this mechanism depends on dealing processes,
say in interbank exchange dealings and in stock dealings. While a dealer quotes ask
and bid price simultaneously in the former, ask and bid price are quoted by diGerent
dealers in the latter.
Thus if we try to 2nd a general model, which is able to treat both interbank exchange

markets and stock markets, we have to neglect such variables as ask and bid prices
in a model. However, if we focus on making only a model of an interbank exchange
market, we may use the spread between bid and ask prices. Since these spreads provide
important information of dealers’ mind of earnings and hedging risks, the movement
of the spreads could be one of the essential factors for modeling price movements.
In the present paper, we propose a model of interbank exchange dealing by using

not only price movements but also the spreads and the dealing time intervals. In our
previous study [15], using real data of the interbank exchange market between the
Swiss franc and the US dollar, we have already analyzed the interaction among the
price movements, the dealing time intervals and the spreads of real data, and we have
discovered that when the spread becomes larger, the dealing time interval becomes
shorter and the movement of price becomes larger [15]. Since the expansion of the
spread means that ask and bid prices are separated from the middle price, it is natural
to consider that the dealer tries to sell at higher prices and to buy at lower prices.
Such a bull quotation is anticipated to lead to the situation that dealing time intervals
become longer when the spread becomes larger, since it is not so easy to 2nd a dealing
partner. However, our analyses [15] show a completely opposite tendency. One of the
motivations of the present paper is to construct a novel model which could explain
this remarkable tendency from the viewpoint of statistical physics.
The present paper is organized as follows. In Section 2.1, we model the process

of deciding bid and ask prices in the interbank exchange market. In our model, we
consider the distribution of possible future prices by introducing a geometric Brownian
motion [16,17]. Then, we extend it to the distribution from which each dealer expects
future prices. In addition, the variance of the distribution corresponds to a Iuctuation
term since dealers’ action is considered as behavior of particles. Next, we formulate the
deciding mechanism of the spread by each dealer. In economics, there is a fundamental
concept that dealers always act most rationally. Namely, we can naturally consider that
each dealer decides the best spread so that an expected utility is maximized. However,
research results of Refs. [1–13] have not used this concept, since it is not so easy to
treat or describe such dealers’ mind in a quantitative way. Then, if we consider the
reciprocal of the expected utility as a potential energy in physics, the most stable state,
that is the best spread, is realized by maximizing the expected utility depending on past
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information. Thus, in our model, we treat dealers’ mind as a matter with a universal
property by assuming the natural property that the dealers always act most rationally.
In Section 2.2, we make a model for a process of dealing execution in order to decide

dealing time intervals. Here, all dealers are assumed to take part in the model market
with the formulae proposed in Section 2.1 and 2nd a dealing partner randomly. When
a dealer succeeds in getting a deal with the dealing partner, a dealing time interval is
decided. In Section 2.3, we introduce Auto Regressive Conditional Heteroscedasticity
(ARCH) process [18] in order to use it as surrogate data of the price movements.
In Section 3, we estimate several statistical properties on the real data in order to
show that the outputs from the proposed model have similar stochastic properties. In
Section 4, we show that the same property appears in the data obtained by the proposed
model and we also discuss the reason why it appears in the proposed model and the
real data from the viewpoint of statistical physics.

2. Proposition of our model

We assume that dealers’ quotations of bid and ask prices are only determined by the
past information. However, in our model we try to consider only the past movement
of middle prices between ask and bid prices. Namely, we neglect here the volume of
dealings, not only for the sake of simplicity but also for discussing an essential aspect
of complex behavior of price movements.

2.1. Dealers’ action

In this section, we consider a model of the decision mechanism for the spread on the
basis of real dealing action by dealers. First, we formulate the possible future prices
by introducing a geometric Brownian motion [16,17]:

dP(n+ dn) = �(n)P(n) dn+ �(n)P(n) dW ; (1)

where n is a present temporal index, P(n) is a middle price, dW ∼ N (0; dn) and
N (0; dn) is a standard normal distribution. Next, we de2ne two coeKcients �(n) and
�(n) in Eq. (1) as follows. Let us assume to have the past information of middle
prices, which are denoted by P(�), (� = 1; 2; : : : ; n). Here � is the temporal index,
that is, � = 1 indicates that it is the 2rst term and P(1) is the 2rst information. Since
the index n increases one by one whenever each dealing occurs, we consider that
dn = 1. Consequently we have dP(n + 1) = P(n + 1) − P(n). Then, we de2ne �(n)
and �(n) by the mean and standard deviations of the movements dP(w)=P(w− 1) (for
w= n−p+ 1; : : : ; n), which means the return rates of middle prices during the last p
terms.
Now, let us introduce two new variables MP and  to modify Eq. (1) as

P(n+ 1) = MP(n+ 1) + (n+ 1) dW ; (2)
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Fig. 1. As past information, we only utilize the movement of past middle prices P. The distribution A oGers
a possibility of future prices at the (n+1)-th dealing as shown in Eq. (2). The distribution B is an expected
distribution of a future price by a dealer Dd whose expected value of the future price is MPDd (n + 1) as
shown in Eq. (7). The standard deviations of these distributions are described as (n + 1).

where
MP(n+ 1) = �(n)P(n) + P(n) = (�(n) + 1)P(n) ; (3)

which describes the eGect of preserving the trend of price movements, and

(n+ 1) = �(n)P(n) ; (4)

which describes the eGect of maintaining the intensity of price movements. Eq. (2)
indicates that there exists a distribution of possible future prices as shown in Fig. 1.
We call it the distribution A. The variable MP(n+1) is the mean value of the distribution
A and (n+ 1) is the standard deviation of the distribution A.
Dividing both hands sides by P(n), Eq. (1) is followed by

dP(n+ 1)
P(n)

= �(n) + �(n) dW ; (5)

which means that the return rates follow a Brownian motion. Moreover, since

d logP(n+ 1) = log
(
P(n+ 1)
P(n)

)
;

= log
(
P(n) + dP(n+ 1)

P(n)

)
;

= log
(
1 +

dP(n+ 1)
P(n)

)
;

� dP(n+ 1)
P(n)

; (6)
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the return rate means the movement of logarithmic prices. It should be noted that
Eq. (6) is the 2rst-order approximation of the Taylor series.
Now, we generalize dealers’ actions to model the deciding mechanism of the spreads

between bid and ask prices. In Eq. (2), a best prediction value for the term n + 1
surely exists and it is MP(n+1), because it takes the highest probability (of course it is
unknown). However, there exists a wide variety of expected prediction values MPD(n+1),
which depend on dealers, D={Di; i=1; 2; : : : ; I}, where Di denotes the ith dealer. Thus,
in order to model the decision mechanism of prices, we consider these expected best
predictions MPD(n+1) by the dealers D as follows. Since a future price will be decided
by the predicted price of a dealer who will be able to get a real deal, possible future
prices correspond to the predicted future prices by the dealers D. Thus, the distribution
of MPD(n+1) should be the same as the distribution A (the elements of the distribution
A are both possible future prices P(n + 1) and the future prices expected by other
dealers D).
Now, let us consider dealing actions by dealers included in distribution A. From

Eq. (2), a distribution of future prices expected by the dth dealer (Dd), PDd(n+1), is
described by

PDd(n+ 1) = MPDd(n+ 1) + (n+ 1) dW ; (7)

where MPDd(n + 1) is the mean value of the distribution of prediction values by the
dealer Dd and (n + 1) is the standard deviation of the distribution, which is a risk
for predicting future price and which is denoted as the same as Eq. (2) for simplicity.
Namely, Eq. (7) explains the existence of the distribution B as shown in Fig. 1.

Next, in order to obtain an expected return of one step future at the term n, we try
to calculate expected values of the gain GDd(n + 1) and the loss LDd(n + 1) at the
term n+ 1. It should be noted that GDd(n+ 1) and LDd(n+ 1) depend on bid and ask
prices quoted by the dealer Dd. We consider K sample variables of the distribution B
of Eq. (7), xDd

k (n + 1) (k = 1; 2; : : : ; K). Since it is very natural for dealers to try to
sell at higher prices and to buy at lower prices, we denote the ath “largest” variable
of them as an ask price xDd

a (n + 1) and the bth “smallest” variable as a bid price
xDd
b (n + 1). Here a = b, since the center of the distribution B is the predicted future
“middle” price. Moreover, when the actual future price P(n+ 1) becomes xDd

k (n+ 1),
xDd
a (n+ 1)− xDd

k (n+ 1) or xDd
k (n+ 1)− xDd

b (n+ 1) are returns of the dealer Dd.
Next, the dealer Dd considers that if P(n+1)= xDd

k (n+1), there exists a prediction
error of MPDd(n + 1) − xDd

k (n + 1) in the distribution B of Fig. 2. Since MPDd(n + 1)
and MxDd(n+ 1) are the mean values of the same distribution, MPDd(n+ 1) = MxDd(n+ 1).
Then, the prediction error is given by MxDd(n+1)−xDd

k (n+1). Moreover, the dealer Dd

considers that predicted future prices MPD
′
(n+ 1) by dealers other than the dealer Dd,

D′ = {Di; i= 1; : : : ; I; i �= d}, follows the distribution C shown in Fig. 2. The variable
MPD

′
(n+ 1) is described by

MPD
′
(n+ 1) = xDd

k (n+ 1) + (n+ 1) dW : (8)

The meaning of Eq. (8) is that the predicted future prices by dealers D′ distribute
around the actual future price xDd

k (n + 1), or P(n + 1), which is a very natural
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Fig. 2. A dealer Dd predicts a future price that drops in distribution B. The dealer Dd considers that if
P(n+1)= xDdk (n+1), there is a prediction error between the expected value of the future price MPDd (n+1)
and the real future price P(n + 1). Then, the dealer also considers the expected values of the future price
MPD

′
(n+ 1) by other dealers D′ (D′ = {Di; i = 1; : : : ; I; i �= d}), which are included in the distribution C as

shown in Eq. (8).

interpretation. Generally, the actual future price corresponds to the mean value of the
future prices predicted by all dealers.
The natural condition that the dealer Dd gets a bid deal or an ask deal with dealers

D′ is given by xDd
a (n+1)6 MPD

′
(n+1) or xDd

b (n+1)¿ MPD
′
(n+1). That is, the region

where this condition is satis2ed is de2ned by fC(¿ xDd
a (n+ 1)) or fC(6 xDd

b (n+ 1)).
Here, fC is a probability distribution function of the distribution C of Eq. (8). The
diGerence of the mean value between the distributions B and C corresponds to the
prediction error of the dealer Dd, MxDd(n+1)− xDd

k (n+1). Then, fC(¿ xDd
a (n+1)) and

fC(6 xDd
b (n+1)) are described by fB(¿ xDd

a (n+1)+ { MxDd(n+1)− xDd
k (n+1)}) and

fB(6 xDd
b (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)}), respectively. Then, an expected value
of the gain GDd(n+ 1) is calculated as follows:

GDd(n+ 1) =
a∑

k=1

1
K
(xDd
a (n+ 1)− xDd

k (n+ 1))

×fB(¿ xDd
a (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)})

+
K∑
k=b

1
K
(xDd
k (n+ 1)− xDd

b (n+ 1))

×fB(6 xDd
b (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)}) ; (9)
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where the 2rst term of Eq. (9) is the expected value that the dealer Dd can get an
ask dealing at a higher price than a real future price xDd

k (n+ 1), or P(n+ 1), and the
second term of Eq. (9) is the expected value that the dealer Dd can get a bid dealing
at a lower price than the real future price xDd

k (n + 1), or P(n + 1). By the symmetry
of the distribution, Eq. (9) is reduced to

GDd(n+ 1) =
2
K

a∑
k=1

(
xDd
a (n+ 1)− xDd

k (n+ 1)
)

×fB(¿ xDd
a (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)}) : (10)

In the same way as in Eq. (9), an expected value of the loss LDd(n + 1) is
calculated as

LDd(n+ 1) =
K∑
k=a

1
K
(xDd
k (n+ 1)− xDd

a (n+ 1))

×fB(¿ xDd
a (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)})

+
b∑

k=1

1
K
(xDd
b (n+ 1)− xDd

k (n+ 1))

×fB(6 xDd
b (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)}) ; (11)

where the 2rst term is the expected value that the dealer Dd gets an ask dealing at a
lower price than a real future price xDd

k (n+1), or P(n+1), and the second term is the
expected value that the dealer Dd get a bid dealing at a higher price than a real future
price xDd

k (n + 1), or P(n + 1). Eq. (11) is also reduced to the following equation by
the symmetry of the distribution:

LDd(n+ 1) =
2
K

K∑
k=a

(
xDd
k (n+ 1)− xDd

a (n+ 1)
)

×fB
(
¿ xDd

a (n+ 1) + { MxDd(n+ 1)− xDd
k (n+ 1)}

)
: (12)

Thus, an expected return EDd(n+ 1) at the term n+ 1 is calculated as

EDd(n+ 1)≡GDd(n+ 1)− LDd(n+ 1)

=
2
K

(
K∑
k=1

fB(¿ xDd
a (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)})xDd
a (n+ 1)

−
K∑
k=1

fB(¿ xDd
a (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)})xDd
k (n+ 1)

)
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=
2
K

K∑
k=1

fB(¿ xDd
a (n+ 1) + { MxDd(n+ 1)− xDd

k (n+ 1)})

×(xDd
a (n+ 1)− xDd

k (n+ 1)) : (13)

It is very natural to assume that dealers will decide bid and ask prices by maximizing
EDd(n+1). This maximization corresponds to the fact that it is most stable in potential
energy where dealers act most rationally as introduced in Section 1. Then, we denote
“decided ask prices” by ẋDd

a (n+1) and “decided bid prices” by ẋDd
b (n+1), and also we

denote the maximized value of EDd(n+1) by ĖDd(n+1). Moreover, using ẋDd
a (n+1)

and ẋDd
b (n+ 1), a decided spread is evaluated as

ṠDd(n+ 1) = ẋDd
a (n+ 1)− ẋDd

b (n+ 1) : (14)

In the above discussion, we have derived how the dealer Dd decides spreads. Even
if we use another dealer Di instead of Dd, we can discuss in the same way using
Eqs. (7)–(14). Namely, ĖDd(n+1) and ṠDd(n+1) do not depend on Di (i=1; : : : ; d; : : : ; I)
but they depend only on the temporal movement of the standard deviation (n + 1).
Thus, we can denote them as Ė(n+ 1) and Ṡ(n+ 1). Then, dealer’s quotations of ask
and bid prices are

PDi
a (n+ 1) = MPDi(n+ 1) + Ṡ(n+ 1)=2 ; (15)

PDi
b (n+ 1) = MPDi(n+ 1)− Ṡ(n+ 1)=2 : (16)

In order to study the dependence of Ė(n+ 1) and Ṡ(n+ 1) on the standard deviation
(n+1), we show the relations between (n+1) and Ė(n+1) in Fig. 3(a), and between
(n+ 1) and Ṡ(n+ 1) in Fig. 3(b). For estimating the maximum value of EDd(n+ 1)
of Eq. (13), we vary xDd

a by 0:0001 because real prices are rounded oG after the 2fth
decimal place. From Fig. 3, we can con2rm that when (n+1) increases, Ė(n+1) and
Ṡ(n+1) increase. In Fig. 3(b), Ṡ(n+1) increases discretely by a round-oG eGect. This
kind of nonlinearity aGects for dealing and dealing time intervals as we will show in
Section 3.3.

2.2. The process of dealing execution

In the previous section, we propose a model which decides bid and ask prices
by maximizing EDd(n + 1) using the information on the past movement of middle
prices. In this section, we model the process of dealing execution in order to decide
dealing time intervals. As introduced in the previous section, the distribution of pos-
sible future prices of Eq. (2) corresponds to the distribution of the predicted future
prices MPD(n+1) by dealers D, D= {Di; i=1; 2; : : : ; I}. Namely, the distribution A of
Eq. (2) is rewritten by

MPD(n+ 1) = MP(n+ 1) + (n+ 1) dW : (17)

As the rule of interbank exchange markets, the quotation by a dealer, who quotes it to
other dealers and can really get a deal, is only recorded as a next price. The quotation
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Fig. 3. (a) The horizontal axis is the standard deviation  of the expected distribution A. The vertical axis
is the maximum of expected returns Ė. (b) The horizontal axis is the standard deviation of the expected
distribution . The vertical axis is the decided spread Ṡ.

in fail dealing (rejected by a dealing partner) is not recorded. Namely, we can decide
the dealer by referring to a real record of P(n+1). If we denote this dealer by Dl, its
predicted future price satis2es MPDl(n+ 1) = P(n+ 1).
From Eq. (7), an expected distribution (the distribution B′ in Fig. 4) of the dealer

Dl, who has P(n+ 1) as a predicted future price, is followed by

PDl(n+ 1) = P(n+ 1) + (n+ 1) dW : (18)

From Eqs. (15) and (16), ask and bid prices are decided by

PDl
a (n+ 1) = P(n+ 1) + Ṡ(n+ 1)=2 ; (19)

PDl
b (n+ 1) = P(n+ 1)− Ṡ(n+ 1)=2 : (20)

Moreover, each dealing partner of the dealer Dl has a predicted future price in dis-
tribution A of Eq. (17). Then, in order to decide a dealing partner of the dealer Dl,
we randomly select a variable from the distribution A. If this selected value, which is
the predicted future price of a dealing partner, is larger than the ask price PDl

a or is
smaller than the bid price PDl

b , a dealing really occurs with this dealing partner. Here,
the probability of getting a deal F(n+ 1) at the term n+ 1 is calculated by

F(n+ 1) = fA(¿PDl
a (n+ 1)) + fA(6PDl

b (n+ 1)) ; (21)

where fA is the probability distribution function of the distribution A. We iterate this
random selection until a dealing really occurs. Once it occurs, we record the number
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Fig. 4. We remind that the distribution A is the possibility of future prices and corresponds to the distribution
of expected future prices of each dealer as shown in Eq. (17) since a future price is decided by the expected
price of a dealer who can get a deal. Distribution B′ is the expected distribution of future prices by the
dealer Dl who quotes an ask price PDla (n+1) and a bid price PDlb (n+1) to the other dealers and can really
get a deal at the (n + 1)th term as shown in Eq. (18).

of iterations as the decided dealing time interval !̇(n+1). By the above processes, we
are able to decide the spread Ṡ(n+ 1) and the dealing time interval !̇(n+ 1).

2.3. Approximation of the middle price by ARCH process

Since our aim is to decide dealing time intervals, in order to emphasize the plausi-
bility of this deciding process, we take a best way to use the real data of middle prices
for a next price in the previous section. However, it is also important to consider the
cases that the real data of the middle prices are missing. Thus, in the present section,
we also discuss the plausibility of our model in the case of using a stochastic process
instead of the real data.
In conventional studies to model the price movement, stochastic processes have

often been applied, such as Auto Regressive Conditional Heteroscedasticity (ARCH)
[18] and Generalized Auto Regressive Conditional Heteroscedasticity [19] processes.
In this section, we apply ARCH process for discussing the case that we cannot use
real movements of middle prices for the proposed model. Thus, even if we do not
have real data, we can simulate the mechanism of producing complex behavior of real
market data with the proposed model since we need no real data in deciding the dealer
Dl of the proposed model. 1

1 In the previous section, we discuss how the future spread Ṡ(n+1) and !̇(n+1) can be decided by using
the real data of P(n + 1) as the future price.
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Now, we approximate return rates of middle prices by ARCH process instead of
using the real data of P(n+ 1) in our model. ARCH(1) is described as

�2(n+ 1) = "0 + "1x2(n) ; (22)

x(n+ 1) ∼ N (0; �2(n+ 1)) ; (23)

where x(n) corresponds to the return rate RP(n)=P(n − 1). If the variance and the
kurtosis of return rates are denoted by �2 and #, respectively, "0 and "1 are solved by
the following equations [13]:

�2 =
"0

1− "1
; (24)

# = 3 +
6"21

1− 3"21
: (25)

These values are evaluated from the real data [20] as "0=0:8147×10−7 and "1=0:7010,
and are used throughout the present paper. Then, the movement of middle prices is
simulated by

P(n+ 1) = P(n)
√
�2(n+ 1)$+ P(n) ; (26)

where $ ∼ N (0; 1).

3. Comparing the model and the real data

3.1. The property of real data

As the real data, we adopt the time series of tick data between the Swiss franc and
the US dollar observed in the interbank market [20]. Figs. 5(a)–(d) show the middle
prices, the spread and the dealing time intervals, which are denoted by P̂ (dollars),
Ŝ (dollars) and !̂ (s), respectively. 2 The data series are recorded for 1322 days. In
Fig. 5, n indicates discrete time and it increases one by one with every occurrence of
dealings.
In order to examine the temporal dependency of the real spread Ŝ(n), we estimate

a power spectrum shown in Fig. 5(e). From Fig. 5(e), we con2rm that the real spread
Ŝ(n) has a 1=f−2 type Iuctuation, which means that this temporal dependency is strong.
When a probability density function has a power tail, it is well known that the cor-
responding cumulative distribution function becomes a straight line in a log–log plot.
Fig. 5(f) clearly shows that Ŝ(n) has such a characteristic power law.
Fig. 5(g) shows the relation among the three variables shown below in a three-

dimensional state space. They denote absolute values of the diGerence of middle prices
|RP̂(n)|, the time interval !̂(n), and the spread Ŝ(n). In Fig. 5(g), there exists the
relation that !̂(n) becomes small when Ŝ(n) becomes larger (indicated by the solid

2 We use “∧” for describing real data. For illustration of the proposed model, we use the same variables
that do not have any additional symbols.
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Fig. 5. Real time series of (a) the middle price P̂(n), (b) RP̂(n) = P̂(n) − P̂(n − 1), (c) the dealing time
interval !̂(n) and (d) the spread Ŝ(n). (e) The power spectrum of Ŝ(n) in log–log plots. The slope of −2 is
plotted by a dotted line. (f) The cumulative distribution function of Ŝ(n) in log–log plots. The dotted line
shows the slope of −4. (g) Relations of |RP̂(n)|, Ŝ(n) and !̂(n) in a three-dimensional state space. The
correlation coeKcient of the dotted arrow (3) is 0:33.
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the arrow (1)). Similarly, the dashed arrow (2) shows that !̂(n) becomes smaller as
|RP̂(n)| becomes larger. Moreover, there exists a slight correlation between |RP̂(n)|
and Ŝ(n) with the correlation coeKcient 0:33 (the relation is indicated by the arrow (3)
in Fig. 5(g)). In the case of shuTing these variables randomly, the coeKcient becomes
almost 0, then the value of 0:33 is really signi2cant.

3.2. The property of the data produced from the proposed model

3.2.1. In the case of using the real middle price
First, we utilize the real middle price P̂ for the proposed model and calculate the

dealing time interval !̂′ and the spread Ŝ
′
. 3 We calculate them for 200,000 points with

p = 10. However, since the movement of P̂(w) (w = n − p + 1; : : : ; n) beyond daily
borders is not suitable for our model, we omit such data from our simulation.
We show the time series data obtained from computer simulations in Figs. 6(a) and

(b). Figs. 6(c) and (d) show that Ŝ
′
has the same statistical properties as the real data

Ŝ has. Moreover, Fig. 6(e) also shows that there is a similarity between the real data
and the produced data from the proposed model in a state space reconstruction. There
exists some correlation between |RP̂(n)| and Ŝ ′(n) whose correlation coeKcient is 0:32
(the relation is indicated by the arrow (3) in Fig. 6(e)).

3.2.2. In the case of using the middle price simulated by ARCH process
Next, we make a simulated middle price P̃(n) by ARCH(1) in Fig. 7(a) with "0 =

0:8147 × 10−7 and "1 = 0:7010. We show the change RP̃(n) in Fig. 7(b). Then, we
utilize P̃(n) for the proposed model by p = 10, and calculate the time series data
of !̃′(n) and S̃

′
(n) that have total 200,000 points. We show these time series data

in Figs. 7(b) and (c) and show statistical properties of S̃
′
in Figs. 7(e) and (f). In

Figs. 7(e) and (f), we observe almost the same power law as shown in Figs. 5(e) and
(f) and Figs. 6(c) and (d). Fig. 7(g) shows the relation among the three variables in
the three-dimensional state space. In the same way as in Figs. 5(g) and 6(e), we have
very similar results between the real data and our model, namely there is a sort of
dependency indicated by the arrows (1)–(3). Moreover, there exists some correlation
between |RP̃(n)| and S̃ ′(n) with the correlation coeKcient 0:28 (the relation is indicated
by the arrow (3) in Fig. 7(g)).

3.3. Discussion on the relation in the state space

In Fig. 5(g), we discover that there exists a sort of dynamical relation among |RP̂|,
Ŝ and !̂. In this section, we discuss why such relations are observed in the results.

First, arrow (1), the relation between Ŝ(n) and !̂(n), is caused by the eGect that real
prices, including spreads, are rounded oG after the 2fth decimal place. The reason is

3 We use an extra symbol “′” to each variable, which means that these variables describe the data produced
from the proposed model.
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Fig. 6. (a) The time series data of !̂′(n) and (b) Ŝ
′
(n) produced by the proposed model with the information

of real data. (c) The power spectrum of Ŝ
′
(n) in log–log plots. The slope of −2 is plotted by a dotted

line. (d) The cumulative distribution function of Ŝ
′
(n) in log–log plots. The dotted line shows the slope of

−4. (e) In the case of using |RP̂′
(n)|, Ŝ′(n) and !̂′(n). The correlation coeKcient of the dotted arrow

(3) is 0:32.



210 T. Suzuki et al. / Physica A 337 (2004) 196–218

Fig. 7. (a) The time series data of P̃(n) produced by ARCH(1). "0 = 0:8147 × 10−7 and "1 = 0:7010.
(b) The time series data of RP̃(n). (c) The time series data of !̃′(n) and (d) S̃

′
(n) produced by the

proposed model. (e) The power spectrum of S̃
′
(n) in log–log plots. The slope of −2 is plotted by a dotted

line. (f) The cumulative distribution function of S̃
′
(n) in log–log plots. The dotted line shows the slope of

−4. (g) In the case of using |RP̃′(n)|, S̃′(n) and !̃′(n). The correlation coeKcient between !̂′(n) and Ŝ
′
(n),

the dotted arrow (3), is 0:28.
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Fig. 8. (a) The power spectrum of RP̂(n) in a log–log plot and (b) the power spectrum of |RP̂(n)| in a
log–log plot.

as follows. In the present paper, we simulate Ṡ(n + 1) by 0.0001 like a real dealing
(as is explained in Section 2.1). Let us denote the rounding error of Ṡ(n + 1) by
±%(n + 1) and denote the continuous best spread by VS(n + 1). Then, Eqs. (19) and
(20) are rewritten as

PDl
a (n+ 1) = P(n+ 1) + ( VS(n+ 1)± %(n+ 1))=2 ; (27)

PDl
b (n+ 1) = P(n+ 1)− ( VS(n+ 1)± %(n+ 1))=2 : (28)

In calculating the occurrence probability of a dealing, F(n+1), in Eq. (21), the rounding
error strongly aGects on F(n + 1) when the standard deviation (n + 1) is small,
because the distribution A is a normal one. Moreover F(n+1) increases by −%(n+1)
or decreases by +%(n + 1). When VS(n + 1) is small, that is, the standard deviation
(n+1) is small, the decrease of F(n+1) by +% is much aGected. Moreover, because
the dealing time interval !̇(n + 1) is aGected by F(n + 1), the term +% leads to the
reduction of !̇(n+1). To summarize, for the realization of large !̇(n+1), it is necessary
that the quantity Ṡ(n+ 1) (= VS(n+ 1)± %(n+ 1)) is small. That is, VS(n+ 1) is small
as well.
Next, we explain the relation between |RP̂(n)| and !̂(n) indicated by arrow (2).

Because the power spectrum of RP̂(n) shows almost the same property as the white
noise (Fig. 8(a)), �(n) � 0 and MP(n) � P(n − 1) in Eq. (3). By substituting these
relations into Eq. (17),

MPD(n) � P(n− 1) + (n) dW : (29)

Moreover, since the region RA (in which the probability of dealing realizations of
distribution A increases) is larger than the region RB (in which the probability of
dealing realizations of distribution A decreases) as the movement of the middle price
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Fig. 9. RA is a region in which the occurrence probability of a dealing increases. RB is a region in which
the occurrence probability of a dealing decreases.

|RP(n)| Iuctuates, it is likely to realize a dealing in a shorter term with small !̇(n)
(Fig. 9). Namely, it is suKcient to reduce !̇(n) that |RP(n)| becomes large.
Finally, we discuss the relation between |RP̂(n)| and Ŝ(n) indicated by arrow (3).

First, recall that the spread Ṡ(n) depends on the middle prices in the last p terms
{P(n−p); : : : ; P(n− 1)}. When the movement of middle prices in the last p terms is
large, Ṡ(n) becomes large as well. Since |RP̂(n)| has slightly a temporal dependence
as shown in Fig. 8(b), |RP(n)| could take large values too. Namely, there exists a
positive correlation between |RP(n)| and Ṡ(n). In this reason, we can understand why
there exists the relation among |P̂(n)|, !̂(n) and Ŝ(n) as shown in Fig. 5(g).

4. Veri�cation of the anomaly with the interbank exchange model

In our previous study [15], we discovered a sort of anomaly from the real data as
discussed in Section 1. In this section, we show 2rst that such an anomaly could also
appear in the data produced by the proposed model. Next, we discuss the reason why
such an anomaly occurs from the viewpoint of the proposed model.

4.1. Raster plot and PSTH of the data obtained by the proposed interbank
exchange model

At the beginning, we brieIy review our previous results [15]. In Ref. [15], in order
to analyze interactions of the three variables (P(n); S(n) and !(n)), we use raster plots
and peri-stimulus time histograms (PSTH) [21–23]. These methods are utilized for
evaluating the statistical property of neural spike timings in the 2eld of neurophysiology
and provide good schemes to represent spike timings visually.
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For example, in order to analyze a response of neural spikes caused by external
stimuli, observed spikes by several trials are plotted along a horizontal axis. In this
case, these spikes are aligned on each line with adjusting the timing of external stimuli.
It is called a raster plot. If there exists a temporal tendency in spike timings, we can
visually recognize it by the raster plots. For further understanding of the ensemble
behavior of spike timings, PSTH can be calculated by transforming raster plots into a
histogram expression.
Although the above methods are originally proposed in the 2eld of neurophysiology,

we can expect that both methods can be applied to analyze interbank exchange market
data since there is a similar aspect between neural spikes and interbank exchange
market data from the viewpoint that the timings of each occurrence might have essential
information. However, there is a signi2cant diGerence between them. For neural spikes,
it is widely acknowledged that there is no information in intensities of each spike,
because the intensities of spikes become the same due to all-or-nothing property when
they propagate through axons. On the other hand, for interbank exchange market data,
the intensities of each occurrence (spike) have essential information about the prices.
Thus, we must analyze the ensemble behavior of the intensities of price movements as
well as timing. Considering the similarity and the diGerence between these two classes
of spike information, we modify the methods to be suitable for analyzing interbank
exchange market data.
In drawing raster plots, we consider the occurrence of actual dealings as spikes, and

each day as a single trial. We also consider the time at which the spread becomes very
large as time at which external stimuli are applied in order to investigate the response
of market from the movement of spread reIecting dealers’ mind. In addition, since the
response might depend on a longer temporal eGect due to daily activity, we de2ne four
temporal sections by dividing the daily dealing time from 9:00 a.m. to 5:00 p.m. (each
section has 2 h long). Thus, we calculate raster plots and PSTHs by the following data
selection schemes, (i) and (ii), and investigate the existence of response from external
stimuli by comparing both of their results:

(i) In the case that external stimuli are not applied.
We randomly select 15 dealing data, in which the actual dealings occur nearly at

the median of each section without any prior information. Here, at the times when
these dealings occur, the movements of spreads are regular. Then, their dealings
are placed on the vertical line at t=0 on the horizontal axis in raster plots (though
the selected 15 dealings are not considered to be applied external stimuli). Here,
t describes physical continuous time.

(ii) In the case that external stimuli are applied.
We select top 15 dealing data series whose spreads become much larger in each

section. Namely, these dealings are treated as if external stimuli were applied to
them. Then, these dealings are placed as the same as in (i).

If the movement of spreads has no relation with the dealers’ action and does not
stimulate the dealers’ action, there is not so large a diGerence between the results by
these two cases that external stimuli are (i) not applied and (ii) applied. However, by
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the results of method (ii), we observe that the dealing time interval becomes shorter.
In addition, the price movement also shows the diGerence that it has a peak in the
temporal bin at t=0, which means that the expansion of spreads makes the movement
of middle prices large.
It should be noted that if there exists any expansion of spreads, it indicates that

the ask and bid prices diGer from the middle price. Thus, dealers try to sell at higher
prices and/or to buy at lower prices. It is very natural to consider that since it is hard
for such greedy dealers to 2nd a dealing partner, the dealing time interval becomes
longer. In spite of such bull quotations, the dealing time interval becomes shorter. We
call it an anomaly. We also observe such tendency for the other temporal sections.
Namely, it is shown that the expansion of spreads often makes the interval time of
dealings shorter and the movement of prices larger.
Now, in order to show that such an anomaly could also appear from the data

obtained by the proposed model, we conduct the following two experiments I and II:

(I) We apply the middle prices of real data to the proposed model in order to obtain
dealing time intervals and spreads.

(II) We apply the middle prices simulated by an ARCH process to the proposed model
in order to obtain dealing time intervals and spreads.

We set the temporal bin width as about 30 steps in order to 2t the average values of
PSTH in the previous study [15]. In the jth temporal bin (j = 1; : : : ; J ), dealings are
denoted by sj(m) (m= 1; : : : ; Mj) as shown in Fig. 10, and the average amount of the
daily dealing in each temporal bin is calculated by

Hj =
Mj

D
; (30)

where D is the number of selected dealing data series in methods (i) and (ii). Thus,
we set D= 15. Moreover, in order to examine the average behavior of the movement
of middle prices, the movement of the middle price RPsj(m) in the dealing sj(m) is
used for calculating the following histogram:

hj =
1
Mj

Mj∑
m=1

|RPsj(m)| ; (31)

where RPsj(m) = Psj(m) − Prj(m), Prj(m) is a one-step previous price of Psj(m) and rj(m)
is a one previous dealing of sj(m) as shown in Fig. 10. In Fig. 10, since one previous
dealing of sj(m+1) exists in the same bin, rj(m+1)= sj(m). However, if a previous
dealing of sj(m) does not exist in the same bin, we set its previous value rj(m) in the
previous bin (the (j − 1)th bin). Then, rj(m) �= sj(m− 1).

4.2. Appearance of the anomaly

Fig. 11 shows the analysis results. In Figs. 11(a) and (b), we show the results in
the case of Experiment (I) (using real data). In Figs. 11(c) and (d), we show the
results in the case of Experiment (II) (using ARCH). With each case of applying
the middle prices of real data (in Figs. 11(a) and (b)) and simulated data by ARCH
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Fig. 10. A raster plot for calculating Eqs. (30) and (31). In the jth bin, the number of dealings is Mj . Then,
all dealing timings are numbered from 1 to Mj with the method of raster scanning frequently used in image
processing. In the 2gure, rj(m) is one step previous dealing of sj(m). Here, each sequence of dealings is
aligned horizontally. Since one step previous dealing of sj(m+1) exists in the same bin, rj(m+1)= sj(m).
However, in the case that one step previous dealing of sj(m) does not exist in the same bin, we set its
previous value rj(m) from the previous bin (the (j − 1)th bin). Then, rj(m) �= sj(m− 1).

process (in Figs. 11(c) and (d)), we can con2rm appearance of the anomaly that the
expansion of spreads makes the interval times short and the movements of middle prices
large. In order to discuss the reason for the appearance of the anomaly, it is useful to
use the discussion on the relation among P̂, Ŝ and !̂ indicated by arrows (1)–(3) in
Section 3.3.
First, to discuss the anomaly in hj, we reconsider the relation indicated by arrow

(3) in Figs. 5(g), 6(e) and 7(g). We should remember that the spread Ṡ(n) depends
on the movement of the middle prices for the last p terms, {P̂(n− p); : : : ; P̂(n− 1)}.
Therefore, by weak temporal dependence of |RP̂| shown in Fig. 8(b), there exists
positive correlation between S(n) and |RP(n)|. However, when S(n) becomes larger,
this anomaly appears. In the proposed model, only the last movement of |RP̂(n− 1)|
makes Ṡ(n) larger. Thus, since the memory of the last price movement remains in
the temporal dependency of |RP̂|, when Ṡ(n) becomes larger, the peak showing the
increase of hj appears clearly.
Next, we discuss the anomaly in Hj. The anomaly is easily explained by the same

discussion as we used for the relation between |RP(n)| and !(n) indicated by arrow
(2). Since the dealing time interval !̇(n) becomes short when the price movement
becomes large, it is very clear that the dealing time interval becomes short from the
relation shown by arrow (2).

4.3. Disappearance of an M type rhythm

In the previous study [15], when we use the 2rst scheme (i), the amount of the daily
dealing shows a temporal rhythm whose peak is at about 9:00 a.m. and 3:00 p.m., which
resembles a letter “M” (price movements are almost Iat (no particular rhythms)). On
the other hand, from the results obtained by method (ii), we have found that many
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Fig. 11. The results (a) by method (i) and Experiment (I) (using real data), (b) by method (ii) and
Experiment (I), (c) by method (i) and Experiment (II) (using ARCH process) and (d) by method (ii) and
Experiment (II).



T. Suzuki et al. / Physica A 337 (2004) 196–218 217

dealings appear in temporal bins near t = 0 and the large amount of dealings destroys
the rhythm of the shape “M.” Although we can explain why the anomaly occurs in
real data by our model, an M type rhythm cannot be observed in Fig. 11(a).
We discuss the reason as follows. In real situations, the number of dealings depends

on the number of dealers who participate in the market. This number always Iuctuates
in the real market. For example, since there exists a diGerence between opening time
and closing time in each bank, the number of dealers who participate in the market
gradually increases in the early morning and it gradually decreases in the evening.
Moreover, the number becomes very small at noon because of lunchtime. Namely,
since the basic bias, the average number of real dealings in this case, Iuctuates, such
an M-type rhythm appears. However, in the proposed interbank exchange model, since
we do not consider such a large temporal trend for simpli2cation, the M-type rhythm
does not appear. However, as in our previous study [15], when the spread becomes
large (t=0), we can con2rm the reduction of dealing time intervals and the expansion
of the movement of prices. Figs. 11(c) and (d) show the results of Experiment (II).
The same phenomenon can also appear in this case.

5. Conclusions

In the present paper, we have proposed a novel model of interbank exchange markets
on the basis of the three important variables, namely, dealing time intervals, spreads and
price movements. To con2rm the proposed model, we have conducted numerical simu-
lations on the real data and the ARCH process (as the movement of middle prices). We
have shown that the outputs from the proposed model have almost the same statistical
properties as the real data have. From the viewpoint of the reconstructed state space,
raster plots and PSTHs, we have also shown that there exists a possible dynamical rela-
tion among the simulated three variables, namely, the movement of prices, the dealing
time interval and the spread. The results shown in the present paper strongly suggest
the plausibility of the proposed model. Namely, this model can make us understand
the characteristic phenomena which are observed in actual interbank exchange markets
and it reproduces complex behavior of price movements. The present results are also
supported by the fact that the statistical properties of three variables are preserved.
Moreover, the other motivation of the present paper is to discuss the anomaly dis-

covered in our previous study [15]. Using the same discussion for the existence of
the relation among these three variables, we have explained the anomaly on the basis
of our proposed model. In addition, we have also shown that we can reproduce the
anomaly that is often observed in the real interbank exchange markets, using our pro-
posed model by producing the simulated time series of the interbank exchange markets.
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